En, to, mange – fødslen af en faseovergang

Del
Hvornår er et glas vand et glas med vand? Hvornår er en bunke sand en bunke sand? Professor Georg M. Bruun fra Aarhus Universitet har sammen med et internationalt forskerhold nu udsendt en videnskabelig beskrivelse af, hvordan en makroskopisk helhed opstår partikel for partikel og dermed sat de første ord på en besvarelse af et spørgsmål, der har verseret i fysikkens verden i årtier.

Det kan næsten virke som et paradoks opstået af Shubidua’ske spidsfindigheder, når man spørger sig selv, hvor meget vand man skal have for at have et glas vand, og hvor det vand egentlig kommer fra. Men spørgsmålet blev stillet allerede af de gamle grækere og er derfor i dag kendt som ’Sorites paradokset’.

Direkte oversat fra græsk betyder sorites ’bunke’, og i forskningens verden kan paradokset finde anvendelse, når man for eksempel ser på komplekse molekylesystemer og forsøger at dechifrere, hvordan et givent system er opbygget og hvilke elementer, der er styrende for systemets opståen og stabilitet.

Hvis vi holder fast i vores imaginære glas med vand, kan man med udgangspunkt i paradokset spørge sig selv, om vi stadig kan bruge den samme beskrivelse af glasset med vand, når et enkelt vandmolekyle fjernes? På hvilket tidspunkt begynder systemet at opføre sig anderledes end vand, når man fjerner flere og flere molekyler?

Den sangtekst var nok næppe blevet et hit til fællessang, men for den teoretiske kvantefysiker Georg M. Bruun fra Aarhus Universitet er de samme spørgsmål undersøgt i artiklen Observing the emergence of a quantum phase transition shell by shell i det ansete magasin, Nature.

”Et glas med vand kan beskrives med de termodynamiske begreber tryk, temperatur og tæthed, hvorimod man i langt de fleste tilfælde ikke behøver bekymre sig om opførslen af hvert enkelt vandmolekyle. Men det hele er bygget op af vandmolekylerne, som derved er styrende for systemet – og her mangler vi endnu at forstå overgangene,” forklarer Georg M. Bruun, der er professor ved Institut for Fysik og Astronomi.

Han har, sammen med samarbejdspartnere ved universiteterne i Heidelberg og Lund, forklaret hvordan en eksotisk form for væske, en såkaldt supervæske, opstår og stabiliseres på kvantefysisk niveau. At forstå hvordan en kollektiv opførsel i et system opstår af individuelle partikler har længe været et mål inden for fysikkens verden, og med dette arbejde er man kommet et langt skridt.

En berømt partikel træder frem

En helt central del af den moderne fysiks succes bygger på anvendelsen af såkaldte effektive teorier. Det betyder, at vi ignorerer de finere detaljer i det mikroskopiske, og ser på den større helhed i en mere grovkornet makroskopisk beskrivelse af naturen. Vi ser et glas vand frem for myriader af vandmolekyler. Men hvornår opfører individuelle molekyler eller atomer sig som et system?

Det har gruppen brugt kvantesimulation med kolde atomer til at observere. Eksperimenterne er udført i Tyskland, hvor man har fanget atomerne i et enkelt lag ved hjælp af lasere. Her satte man 2, 6 og 12 atomer ind i laserfælden, så man kunne observere, hvornår de begyndte at opføre sig mere kollektivt som et system og mindre som individuelle atomer.

Forsøgene viste, at man allerede ved 6-12 atomer kunne se begyndelsen af en kollektiv tilstand mellem atomerne, og desuden ane skyggen af en berømthed inden for fysikken: Higgs-partiklen.

Kan det skvulpe er det et glas vand

I sig selv var det lidt sjovt for forskerne, at de kunne se forstadierne til en Higgs-partikel i et forholdsmæssigt billigt eksperiment, der i princippet kan stå på i stuebord. Det skal sammenlignes med det enormt dyre eksperiment ved CERN, hvor Higgs-partiklen i 2012 blev set i en kæmpe acceleratorring på 27km. Higgs-partiklen er grunden til, at stof i universet har masse, og det er interessant, at den også opstår i et kvantefysik system på tærsklen mellem det mikroskopiske og makroskopiske regime.

”Vi har set, hvordan Higgs-partikelen er forbundet med en kvantefaseovergang mellem en normal og en superflydende væske. Vi har også set, hvordan partiklen gradvist opstår, når systemet bliver større. Resultaterne viser, at kvantesimulation med atomer kan bruges til systematisk at undersøge, hvordan makroskopisk opførsel opstår med stigende antal partikler.

Sagt med et glimt i øjet, så har det foreløbigt vist os, at man har et glas vand, hvis man kan skvulpe med atomerne i glasset – men vi er slet ikke færdige med at afdække overgangen mellem individuel og kollektiv opførsel, der omfatter mange andre sjove fænomener som f.eks. Higgs-partiklens ”fætter” Goldstone-partiklen og kvanteeffekter såsom superledning”, siger Georg M. Bruun.

Nøgleord

Kontakter

Professor Georg M. Bruun,
Institut for Fysik og Astronomi,
Aarhus Universitet,
Telefon: 30284269
Email: bruungmb@phys.au.dk

Links

Information om Aarhus Universitet Natural Sciences

Aarhus Universitet Natural Sciences
Ny Munkegade 120
8000 Aarhus C

8715 0000https://nat.au.dk/

Følg pressemeddelelser fra Aarhus Universitet Natural Sciences

Skriv dig op her, og modtag pressemeddelelser på e-mail. Indtast din e-mail, klik på abonner, og følg instruktionerne i den udsendte e-mail.

Flere pressemeddelelser fra Aarhus Universitet Natural Sciences

Ny opdagelse viser, hvordan celler forsvarer sig i stressede situationer27.2.2024 11:23:23 CET | Pressemeddelelse

En ny undersøgelse foretaget af et internationalt forskerhold afslører, hvordan vores celler forsvarer sig i stressede situationer. Forskningen viser, at en lille ændring i det genetiske materiale, kaldet ac4C, fungerer som en afgørende forsvarer, der hjælper celler med at skabe beskyttende tilflugtssteder kendt som stressgranuler. Disse stressgranuler sikrer vigtige genetiske instruktioner, når cellen står over for udfordringer. De nye resultater kan hjælpe med til at vise nye metoder til at behandle sygdomme.

Forskere afdækker et vigtigt led i symbiosen mellem bælgplanter og bakterier13.2.2024 08:00:00 CET | Pressemeddelelse

Forskere ved Aarhus Universitet har gjort en banebrydende opdagelse, der kaster lys over det komplekse samspil mellem bælgplanter og kvælstoffikserende bakterier. Deres undersøgelse beskriver den afgørende rolle, som fosforylering spiller for dannelsen af symbiotiske knolde på planterødder. Det langsigtede mål er at muliggøre symbiose i rodknolde i vigtige afgrøder som byg, majs og ris, så man undgår at bruge kunstgødning.

I vores nyhedsrum kan du læse alle vores pressemeddelelser, tilgå materiale i form af billeder og dokumenter samt finde vores kontaktoplysninger.

Besøg vores nyhedsrum
HiddenA line styled icon from Orion Icon Library.Eye