Ny forskning: Med CO2-ædende bakterier kan vi rense skorstensrøg og genbruge kulstoffet i nye produkter
Forskere fra Aarhus Universitet viser, hvordan vi kan gøre det langt billigere at indfange og samtidig omdanne CO2 fra vores industrier til brugbare produkter. Den nye forskning er netop publiceret i Nature Communications.

Forskere fra Aarhus Universitet (AU) har udviklet en ny teknologi, der ved hjælp af mikroorganismer vil omdanne CO2 i røggas direkte til nye formål – eksempelvis brændstoffer eller andre stoffer, vi kan bruge i den kemiske industri.
Teknologien formår at udnytte CO2 som råstof i modsætning til konventionel CO2-fangst, såkaldt Carbon Capture and Storage, CCS, der har til formål at indfange kulstof fra røggas og omdanne det til fast stof, der så kan lagres i f.eks. undergrunden.
Forskningen er netop publiceret i det videnskabelige tidsskrift Nature Communications.
”I en netto-nul-fremtid er vi nødt til at benytte os af teknologi, hvor vi genbruger den CO2, vi indfanger, i stedet for at blive ved med at hive mere op af jorden,” siger Amalie Kirstine Hessellund Nielsen, ph.d.-studerende ved Institut for Bio- og Kemiteknologi og en af hovedforfatterne bag forskningen.
Hyperspecialiseret proces
CO2 fra røggasser er globalt set den største bidragyder til forhøjet koncentration af klimagassen i atmosfæren. Samtidig er det en af de punktkilder, som er mest problematisk at komme af med, fordi CO2 i røggasser fra f.eks. industri-skorstene er fortyndet, og derfor er vanskelige at fjerne uden store ekstraomkostninger.
Den nye teknologi tager udgangspunkt i en anden slags CO2-fangst, Carbon Capture and Utilisation, CCU, hvor man ved hjælp af såkaldt aminskrubning fjerner CO2 fra røggasser ved hjælp af kemikalier, der binder CO2’en. Ved konventionel Carbon Capture bruger man herefter høj varme for at separere kulstoffet fra kemikalierne i et lukket kredsløb. Den koncentrerede CO2 kan herefter raffineres yderligere i andre krævende processer.
Den teknologi, forskerne fra AU i stedet foreslår er er en ny form for såkaldt Bio-integreret Carbon Capture and Utilisation, BICCU, hvor man genbruger kulstoffet direkte i kredsløbet, og derved undgår mange af de konventionelle procestrin. Det foregår i forskningen fra AU ved hjælp af mikroorganismer, der både fjerner og omdanner CO2 fra røggasserne direkte i fangstenheden i stedet for at bruge høj varme.
”Mikroorganismer er hyperspecialiserede i processen med at optage og omdanne CO2 og har forfinet denne proces gennem milliarder af år. Det udnytter vi i vores bioreaktorer. Så i stedet for at bruge varme tilsætter vi mikroorganismer, der kan hive CO2’en væk fra kemikalierne og lader os spare varmeregningen,” siger Mads Ujarak Sieborg, postdoc ved Institut for Bio- og Kemiteknologi og ligeledes hovedforfatter på den nye forskning.
På denne måde optager mikroorganismerne kulstoffet gennem deres metabolisme og omdanner det til andre produkter, eksempelvis metan, som kan genbruges direkte i industrien.
”Det, der kommer ud af mikroorganismerne, er f.eks. grøn naturgas eller eddikesyre eller andre kemiske byggeblokke, som vi kan bruge videre i vores industrier, i stedet for at hive kulstof op af jorden,” fortsætter Mads Ujarak Sieborg.
Incitament til Carbon Capture
Indtil videre er Carbon Capture stadig en ny teknologi, som ikke mange industrier har taget til sig. Biogasanlæg er begyndt at indfange CO2 fra deres produktion, fordi fraktionen af CO2 i gasserne er så høj, op til 50%. Men i almindelig skorstensrøg fra industrier er fraktionen af CO2 langt mindre, omkring 5-10%.
Årsagen til den begrænsede implementering af Carbon Capture skal findes i, at processen med opvarmning for at separere kulstoffet fra kemikalierne er meget dyr. Den mængde energi, det koster for at lave den øvelse, udgør omkring 30% af al den energi, som kraftværket producerer.
Og håbet er derfor ifølge forskerne, at den mikrobiologiske vej kan åbne op for større incitament til Carbon Capture, fordi omkostningerne er langt lavere, og fordi man samtidig med at indfange CO2’en omdanner den til nye produkter:
”Den biologiske proces opererer ved langt lavere temperaturer, og vores mikrober er resistente over for de gasarter, der er i røggasserne. Men mikroorganismer skal bruge brint til deres proces, som vi får via elektrolyse. Det er brint, der er den begrænsende faktor i systemet i dag, så der er stadig nogle udfordringer, før vi står med en færdig teknologi, men der er også løsninger på problemerne. Vi har et væld af forskellige reaktorer, vi kan teste allerede nu, det handler primært om at sætte systemet rigtigt sammen,” siger Amalie Kirstine Hessellund Nielsen.
Hun fortsætter:
”CCU er en lille, men nødvendig brik for at komme i mål med den grønne omstilling af vores industrier og nå et netto-nul, hvor emissioner af drivhusgasser og fjernelse af disse gasser er i balance. Dog kan teknologien ikke erstatte implementeringen af vedvarende energikilder, som stadig er det vigtigste værktøj i den grønne omstilling.”
----------
FAKTABOKS:
Normalt er et system med CO2-fangstbygget op i to kolonner. I den første kolonne løber røggassen igennem, inden den ryger ud af skorstenen. Kolonnen er fyldt med særlige kemikalier, der indfanger CO2-en på væskeform, såkaldt aminskrubning.
Kemikalierne og CO2’en pumpes herefter over i den anden kolonne, som opvarmes til 120-140 grader, hvilket frigiver CO2 igen, som efterfølgende kan komprimeres og lagres.
I CCU-systemet er første kolonne ens med konventionel CO2-fangsr, men i anden kolonne tilsættes mikroorganismer og brint og en biologisk proces går i gang, hvor mikroorganismerne adskiller kulstoffet og bruger det metabolisk. Resultatet er et slutprodukt, der er afhængig af hvilke mikroorganismer, man benytter, men som er skræddersyet til videre brug i kulstofkrævende industrier.
Alternativet er, at det kulstof, industrierne skal bruge, hives op fra jorden i form af fossil olie og naturgas.
Nøgleord
Kontakter
Ph.d.-studerende Amalie Kirstine Hessellund Nielsen
Institut for Bio- og Kemiteknologi
Mail: akhn@bce.au.dk
Postdoc Mads Ujarak Sieborg
Institut for Bio- og Kemiteknologi
Mail: mus@bce.au.dk
Tlf.: 20676892
Jesper Bruun
Journalist, Aarhus Universitet
Mail: bruun@au.dk
Tlf.: 42404140
Billeder
Følg pressemeddelelser fra Aarhus Universitet Technical Sciences
Skriv dig op her, og modtag pressemeddelelser på e-mail. Indtast din e-mail, klik på abonner, og følg instruktionerne i den udsendte e-mail.
Flere pressemeddelelser fra Aarhus Universitet Technical Sciences
Ny professor på AU FOOD: ”Vi skal tage grøntsagerne langt mere alvorligt”9.10.2025 14:00:00 CEST | Pressemeddelelse
Hanne Lakkenborg Kristensen er tiltrådt som professor i grøntsagsvidenskab ved Institut for Fødevarer på Aarhus Universitet, og 31. oktober giver hun sin tiltrædelsesforelæsning i Agro Food Park for alle interesserede. Professoren er dog langt fra ny på instituttet, hvor hun i mange år har været sektionsleder for forskergruppen Plant, Food and Sustainability og leder for forsøgsstationen AU Auning og har markeret sig som en fagligt stærk forsker og ildsjæl, der kæmper for at få grøntsager højere op i samfundets bevidsthed.
Mini-organer afslører, hvordan livmoderhalsen selv bekæmper infektioner3.10.2025 20:10:00 CEST | Pressemeddelelse
Ved hjælp af laboratoriedyrkede mini-organer har forskere fra Aarhus Universitet afsløret, hvordan celler i livmoderhalsen aktivt opdager og bekæmper infektioner. Opdagelsen baner vejen for nye behandlinger mod kønssygdomme og ufrivillig barnløshed.
PFAS i dansk hjortevildt udgør ikke en sundhedsrisiko1.10.2025 10:00:00 CEST | Pressemeddelelse
Der har over de senere år vist sig stort indhold af PFAS i ænder fra nogle danske lokaliteter, og derfor har der været stor interesse for, om hjortevildt også har koncentrationer af de farlige PFAS-stoffer, der ligger over de anerkendte grænseværdier.
Nyt forskningsprojekt undersøger, om PFAS fra foder havner i grisekød30.9.2025 10:00:00 CEST | Pressemeddelelse
I et nyt projekt skal forskere fra AU Viborg og DTU Fødevareinstituttet undersøge, hvor meget PFAS som optages og ophobes i forskellige væv i grise, og hvad risikoen er for, at de såkaldte evighedskemikalier i sidste ende ender i kød på danskernes tallerkener.
Julestjernen får et grønnere fremtidsperspektiv22.9.2025 12:29:04 CEST | Pressemeddelelse
Nye forskningsresultater viser vejen til bæredygtig produktion af de karakteristiske julestjerner uden brug af bakterier og tunge arbejdsprocesser.
I vores nyhedsrum kan du læse alle vores pressemeddelelser, tilgå materiale i form af billeder og dokumenter samt finde vores kontaktoplysninger.
Besøg vores nyhedsrum