Vi er med ved fødslen af en kvasipartikel

Del

Ny artikel i Nature Physics: Et forskerhold fra Danmarks Grundforskningsfonds “Center for Complex Quantum Systems” CCQ ved Aarhus Universitet har observeret selve dannelsen af en kvasipartikel.

Der findes myriader af forskellige partiker i naturen. På et fundamentalt niveau består alt af elementarpartikler som f.eks. elektroner eller kvarker, og atomer og molekyler udgør endvidere byggestenene for al stof her på jorden. De såkaldte kvasipartikler er måske mindre kendte men mindst lige så vigtige. Kvantemekanikken fortæller os nemlig, at eksiterede tilstande af systemer, der i sig selv består af trillioner af partikler, kan opføre sig som én enkelt partikel, der dog typisk har ret bizarre egenskaber som f.eks. en negativ masse. Man kalder disse tilstande for kvasipartikler, og deres eksistens har vidtrækkende konsekvenser for vores forståelse af naturen. Kvasipartikler er blevet observeret i talrige eksperimenter, typisk ved at se på de spor, de efterlader sig i et materiale. Det har dog indtil for nyligt været en fjern drøm at se direkte, hvordan kvasipartikler rent faktisk skabes ud fra de trillioner af underliggende partikler.

Tre forskergrupper fra “Center for Complex Quantum Systems (CCQ)” ved Aarhus Universitet har nu i samarbejde fået drømmen til at gå i opfyldelse. Eksperimentet, ledet af Jan Arlt, er baseret på en eksotisk tilstand af stof – et såkaldt Bose-Einstein kondensat, der dannes ved ekstremt lave temperaturer, ca. en million gange koldere end det interstellare rum. "Ved at ændre kvantetilstanden for nogle få atomer i kondensatet kunne vi observere dannelsen af en kvasipartikel kaldet Bose-polaronen” forklarer Jan Arlt. Bose-polaronen spiller en central rolle i naturen, fordi den dannes, når en elektron vekselvirker med omgivelserne i mange helt almindelige materialer. Den bestemmer derfor egenskaberne af en lang række stoffer, ofte med teknologiske anvendelser, såsom ledningsevne og superledning.   

V.h.a. sofistikeret laser- og kvanteteknologi har Jan Arlts gruppe observeret, hvordan Bose-polaronen dannes – de har så at sige taget en ”film” af dens fødsel i Bose-Einstein kondensatet. Dette er helt umuligt i konventionelle materialer og kan heller ikke simuleres af selv den kraftigste computer. Georg Bruun, som leder af en af teorigrupperne i forskningssamarbejdet, forklarer at ”På den måde illustrerer Aarhus-eksperimentet, hvordan Bose-Einstein kondensater kan bruges som kvantesimulatorer til at udforske komplekse materialers egenskaber, der ligger udenfor klassiske computeres rækkevidde. Vi har allerede nu fået vigtig ny viden fra eksperimentet, som forbedrer vores forståelse af kvasipartikler betragteligt".

Den evne til at måle Bose-polaronens dynamiske egenskaber, vi har demonstreret i Aarhus, udgør et markant fremskridt med vidtrækkende perspektiver” siger Thomas Pohl, der er leder af CCQ og desuden står bag den anden teorigruppe i samarbejdet. Grundforskningscenteret vil nu gå videre med forskningen og planlægger at manipulere kvasipartiklerne direkte med lasere. Forskerne håber på den måde at bruge kvanteteknologi og simulering til at kontrollereog designe materialer med helt nye egenskaber, der kan have vidtrækkende teknologiske perspektiver. 

Artiklen i Nature Physics kan hentes her.

Billedtekster:

Et atom (rød kugle) skaber bølger i det omkringliggende Bose-Einstein kondensat (blå baggrund), hvorved en kvasipartikel skabes. Processen ligner den, hvormed en elektron bevæger sig igennem et fast stof samtidig med, at den deformerer den underliggende krystalstruktur (indsæt). Illustration: CCQ, AU.

Den del af Aarhus-eksperimentet, hvor atomerne i første omgang fanges og køles ned. Foto: Lars Kruse/AU foto.

Nøgleord

Kontakter

Thomas Pohl pohl@phys.au.dk
Ole J. Knudsen ojk@phys.au.dk

Links

Information om Aarhus Universitet Natural Sciences

Aarhus Universitet Natural Sciences
Ny Munkegade 120
8000 Aarhus C

8715 0000https://nat.au.dk/

Følg pressemeddelelser fra Aarhus Universitet Natural Sciences

Skriv dig op her, og modtag pressemeddelelser på e-mail. Indtast din e-mail, klik på abonner, og følg instruktionerne i den udsendte e-mail.

Flere pressemeddelelser fra Aarhus Universitet Natural Sciences

Strukturbestemmelse af glycintransportøren GlyT1 viser nye veje i udvikling af psykiatriske lægemidler4.3.2021 12:08:47 CET | Pressemeddelelse

Glycin kan stimulere eller hæmme neuroner i hjernen og derved kontrollere komplekse funktioner. Med afdækning af den tredimensionelle struktur af glycin-transportøren GlyT1 er et internationalt forskerhold nu kommet et stort skridt nærmere på at forstå reguleringen af glycin i hjernen. Disse resultater, der er offentliggjort i Nature, åbner muligheder for at finde effektive lægemidler, der hæmmer GlyT1-funktionen, hvilket kan få stor betydning for behandling af skizofreni og andre psykiske lidelser.

Dennis tæmmede proteinet fra helvede på syv år17.2.2021 09:23:22 CET | Pressemeddelelse

Efter syv års intens forskning er det lykkedes en århusiansk forskergruppe via et tværdisciplinært samarbejde at forstå, hvorfor en meget usædvanlig og udstrakt struktur er vigtig for funktionen af et essentielt protein fra det menneskelige immunforsvar. Den nye forskning åbner nye muligheder for at justere immunsystemets aktivitet op eller ned. Stimulering af immunsystemet er relevant f.eks. i forbindelse med behandling af kræft, mens dæmpning anvendes ved behandling af autoimmune sygdomme.

I vores nyhedsrum kan du læse alle vores pressemeddelelser, tilgå materiale i form af billeder og dokumenter samt finde vores kontaktoplysninger.

Besøg vores nyhedsrum