Business Wire

NTT

Share
NTT: Realization of Modularized Quantum Light Source Toward Fault-tolerant Large-scale Universal Optical Quantum Computers

NTT Corporation (NTT, President & CEO: Jun Sawada, Chiyoda-ku, Tokyo)(TOKYO:9432) in cooperation with the University of Tokyo (President: Teruo Fujii, Bunkyo-ku, Tokyo) and RIKEN (President: Hiroshi Matsumoto, Wako-shi, Saitama) has developed an optical fiber-coupled quantum light source (squeezed light source) (*1), which is a key technology for realizing a fault-tolerant large-scale universal optical quantum computer.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20211222005615/en/

Quantum computers are being researched and developed worldwide because they are capable of parallel computational processing using unique phenomena to quantum mechanics such as quantum superposition states and quantum entanglement states. While various methods are being considered, the optical quantum computer using photons has many advantages. For example, it does not require the low temperature and vacuum equipment required by other methods, which makes it compact. Also, by creating a time-domain-multiplexed quantum entangled state, the number of qubits can be easily increased without micro integration of circuits or parallelization of equipment. In addition, high-speed computational processing is possible thanks to the broadband nature of light. Furthermore, quantum error correction has been theoretically shown to be possible by using continuous variables of light that take advantage of the parity of photons, rather than by using discrete variables that use the presence or absence of photons. This method has a high compatibility with optical communication technologies such as low-loss optical fibers and highly functional optical devices, which makes dramatic progress toward the construction of universal large-scale fault-tolerant optical quantum computers.

To realize optical quantum computers, one of the most important components is a quantum light source generating squeezed light, which is the origin of quantum nature in optical quantum computers. Especially, an optical fiber-coupled quantum light source is highly desired. Squeezed light is a non-classical light that has an even number of photons and squeezed quantum noise and is used to generate quantum entanglement. In addition, squeezed light plays an extremely important role in quantum error correction, since quantum error correction is made possible by utilizing the parity of the number of photons. To achieve a large-scale universal fault-tolerant optical quantum computer, we need a fiber-coupled squeezed light source with highly squeezed quantum noise and photon number parity that is maintained even in high-photon-number components. For example, a squeezing level of over 65% is required to generate time-domain multiple quantum entanglement (two-dimensional clustered states) (*2) that can be used for large-scale quantum computation. However, such devices have never been developed because of the difficulty of generating the squeezed light with high quality.

In this study, we have developed a new optical fiber-coupled quantum light source that operates at optical communication wavelengths. By combining it with optical fiber components, we successfully generate continuous-wave squeezed light with more than 75% squeezed quantum noise with more than 6 THz sideband frequency even in an optical fiber closed system for the first time. This means that the key device in optical quantum computers has been realized in a form that is compatible with optical fibers while maintaining the broadband nature of light. This will enable the development of an optical quantum computer in a stable and maintenance-free system using optical fibers and optical communication devices. This will greatly advance the development of rack-sized large-scale optical quantum computers.

The results of this research are to be published in the American scientific journal Applied Physics Letters on December 22, 2021 (US time). This paper has also been selected as an "Editor's Pick" paper. A part of this research was supported by the Japan Science and Technology Agency (JST) Moonshot Research and Development Program.

[Points]

  • We have developed an optical fiber-coupled high-performance squeezed light source module, which will be a key device to realize a rack-sized optical quantum computer.
  • By using the developed fiber-coupled quantum light source module and optical communication devices, continuous-wave squeezed light with quantum noise suppressed by more than 75% over a wide bandwidth of more than 6 THz has been successfully generated in an optical fiber closed system for the first time.
  • This achievement makes it possible to develop an optical quantum computer on a realistic scale in a stable and maintenance-free optical system using optical communication devices and will greatly advance the development for a fault-tolerant large-scale universal optical quantum computer.

[Background]
Research and development to realize a universal quantum computer is being actively conducted worldwide. Recently, quantum computation with about 100 physical qubits has been reported using superconducting circuits. However, to realize a fault-tolerant universal quantum computer, about one million physical qubits are required. Therefore, increasing the number of qubits has become a major challenge in quantum computation. To realize a million qubits by superconducting circuits or trapped ions, approaches to increase the number of qubits have been taken by integrating its elements and parallelizing equipment. On the other hand, an optical quantum computer is expected to be capable of overwhelmingly large-scale universal quantum computation that uses a time-domain multiplexing technique (*3) and measurement-induced quantum manipulation (*4), which is a completely different approach from conventional methods. In the time-domain multiplexing technique, we divide continuously flying light into time segments and place information on the separated light pulses. By this method, we can easily increase the number of qubits on the time axis without increasing the size of the equipment (Fig. 1). Furthermore, quantum error correction has been theoretically shown to be possible by using the parity of the number of photons and the continuous variables of light. By using a low-loss optical fiber as a propagation medium for flying optical qubits, large-scale quantum entangled states will be able to be generated freely and stably in combination with optical communication devices. Specifically, with only four squeezed light sources, two optical fibers of different lengths (optical delay lines), and five beam splitters (Fig. 2), large-scale two-dimensional clustered states can be generated that are necessary for universal quantum computations. This is an approach that does not necessarily require integration or large-scale equipment and makes it possible to realize universal quantum computation on the realistic equipment scale of a rack, whereas methods using superconducting circuits or trapped ions require integration of elements or parallelization of equipment. In addition, this method can conduct high-speed calculations by taking advantage of the high frequency of light. This means that not only can high-speed quantum algorithms be implemented but also their clock frequencies can be high, making optical quantum computers the ultimate high-speed information processing technology.

So far, we have demonstrated various optical quantum operations for realizing this optical quantum computer by using a spatial optical system consisting of many mirrors aligned with high precision. This is to minimize the optical loss of light and enhance the interference between light as much as possible. However, if the mirrors are misaligned even slightly, the desired characteristics will not be achieved, and the path of the light had to be readjusted for each experiment. For these reasons, to realize a practical use optical quantum computer, an optical system must be used that is closed to the optical waveguide, such as an optical integrated circuit or optical fiber, which has excellent operational stability and is maintenance-free. In particular, the most fundamental element in optical quantum computers is squeezed light. This non-classical light has the squeezed quantum noise of the amplitude or phase of a wave, which is a non-commutative pair of physical quantities. Since this light is difficult to generate and is easily degraded by optical loss, the light from an optical fiber-coupled squeezed light source tends to be poor. Especially, more than 65% squeezed light, which is necessary for generating time-domain-multiplexed large-scale quantum entangled state (two-dimensional cluster states) has not been realized with an optical fiber closed configuration.

[Technical progress]
We have developed a low-loss fiber-coupled quantum light source module (optical parametric amplification module) (Fig. 3). We have achieved low loss by renewing the fabrication method of the periodically poled lithium niobate (PPLN) waveguide, which is the main part of the module. The module was assembled as a low-loss optical fiber-coupled module by using the assembling technique of optical communication devices that NTT has cultivated. While connecting optical fiber components, we successfully measured squeezed light in which quantum noise is squeezed to more than 75% with a bandwidth of more than 6 THz (Fig. 4). This means that the quantum states required for optical quantum computing can be generated and measured even in a fully closed system in optical fibers. Therefore, the developed fiber-coupled quantum light source will make it possible to realize a stable and maintenance-free optical quantum computer on a realistic scale, which will greatly advance future development.

In this experiment, we used a new method in which the first module generates squeezed light and the second module converts the optical quantum information into classical light information. The optical parametric amplifier developed as the light source is used in the opposite direction to achieve optical amplification that maintains photon number parity. Unlike the conventional balanced homodyne detection technique, this measurement method can amplify and convert the quantum signal into a classical optical signal without changing it into electrons. Thanks to this, it enables overwhelmingly fast measurements. This technology can be used to realize all-optical quantum computers in the future and will greatly contribute to realizing all-optical quantum computers that operate at terahertz clock frequencies and are overwhelmingly fast.

[Future works]
As a first step, we will develop an optical quantum computer composed of optical fiber components in combination with various optical quantum operations that we have developed so far. In addition, we will improve the quantum noise squeezing ability of the quantum light source to realize a fault-tolerant large-scale universal optical quantum computer.

[Support for this research]
This research was supported by the Japan Science and Technology Agency (JST) Moonshot R&D Project, Moonshot Goal 6: "Realization of a fault-tolerant universal quantum computer that will revolutionize economy, industry, and security by 2050" (Program Director: Katsuhiro Kitagawa, Professor, Graduate School of Engineering Science, Osaka University). R&D project "Development of Large-scale Fault-Tolerant Universal Optical Quantum Computers" (Project Manager: Akira Furusawa, Professor, Graduate School of Engineering, The University of Tokyo).

[Comment of project manager]
Until now, it was thought that integrated circuits were essential for the realization of a large-scale quantum computer. However, this success shows that integrated circuits are not necessary and that, by using the developed modules and optical fiber components, we can realize large-scale optical quantum computer. With this achievement, the realization of a large-scale quantum computer has become a reality, and it can be said that a game-changing technology has been born.

[Glossary]
*1 Squeezed light source
A device that generates light in a state in which one of the quantum fluctuations (quantum noise) of a non-commutative pair of physical quantities is compressed. It is realized by a medium that effectively induces nonlinear optical phenomena.

*2 Two-dimensional (2D) cluster state
A large-scale quantum entangled state that can realize any quantum computation pattern. In 2019, Professor Akira Furusawa and his colleagues at the University of Tokyo realized a two-dimensional optical cluster state with more than 10,000 optical qubits. [Ref. 1]

*3 Time-domain-multiplexing technique for generation of quantum entanglement
A method of generating large-scale entangled states from a limited number of quantum light sources by temporally separating the light emitted from a continuous quantum light source and interfering with the separated quantum wave packets (pulses) with an optical delay interferometer.

*4 Measurement-based quantum computation
A method that can perform universal quantum computation equivalent to the gate-based quantum computer, which has been researched worldwide. Unlike conventional gate-based quantum computing, in which individual qubits are entangled by gate operations, this method involves preparing a large-scale quantum entanglement in advance. By observing some qubits, we can manipulate the remaining qubit.

[ Reference 1]
W. Asavanant, et al., "Generation of time-domain-multiplexed two-dimensional cluster state," Science 366, 373 (2019).

[ Publication Information]
Takahiro Kashiwazaki, Taichi Yamashima, Naoto Takanashi, Asuka Inoue, Takeshi Umeki, and Akira Furusawa
"Fabrication of low-loss quasi-single-mode PPLN waveguide and its application to a modularized broadband high-level squeezer"
Applied Physics Letters
DOI: 10.1063/5.0063118

Link:

ClickThru

About Business Wire

Business Wire
Business Wire
101 California Street, 20th Floor
CA 94111 San Francisco

http://businesswire.com

Subscribe to releases from Business Wire

Subscribe to all the latest releases from Business Wire by registering your e-mail address below. You can unsubscribe at any time.

Latest releases from Business Wire

Taylor Wessing Diversifies Its International Strategy17.12.2025 15:05:00 CET | Press release

International law firm Taylor Wessing is set to diversify its strategy within its international alliance, in order to push international growth and innovation. This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20251217415857/en/ Dr. Oliver Bertram, Global Co-Chair at Taylor Wessing The English part of the partnership is seeking a merger with US law firm Winston & Strawn and would – depending on a corresponding partner decision, which is still pending – leave the Taylor Wessing alliance at the end of April 2026. Both parties wish to continue their successful joint international client work unchanged. Therefore, collaboration between Taylor Wessing and future Anglo-American firm Winston Taylor will continue seamlessly based on a cooperation agreement, ensuring that clients will not experience any change in their collaboration with Taylor Wessing. With the firm’s new open strategy, Taylor Wessing equally meets the strategic requirem

ISACA to Lead Global Credentialing for CMMC Cybersecurity Framework as International Cyber Readiness Standards Rise17.12.2025 15:00:00 CET | Press release

ISACA appointed to certify professionals assessing organisations against the US Department of War’s (DoW) Cybersecurity Maturity Model Certification (CMMC) programme.New requirements mean that all global businesses supplying to US DoW will need to be compliant with this framework, impacting over 200,000 organisationsAppointment supports global demand for consistent, verifiable cyber maturity amid escalating cyber threats and growing assessor shortages.The Cyber AB remains the official accreditation body for the CMMC programme, authorizing the CAICO and other CMMC ecosystem parties As cyber threats escalate and governments raise expectations around operational resilience, ISACA has been appointed to lead the global credentialing programme for the U.S. DoW’s Cybersecurity Maturity Model Certification (CMMC) program. The appointment positions ISACA – the international association for cybersecurity, audit and digital trust – as the exclusive CMMC Assessor and Instructor Certification Organ

ASN Bank Signs a Contract With HCLTech to Accelerate Digital Transformation and Enhance Customer Experience17.12.2025 14:43:00 CET | Press release

HCLTech, a leading global technology company, today announced that it has been selected as a strategic partner by ASN Bank (formerly de Volksbank), the fourth-largest retail bank in the Netherlands. As part of its new strategy ‘Simplify and Grow’, ASN Bank aims to modernise and standardise its IT architecture, which will involve consolidating IT services, simplifying the vendor landscape and building a future-ready organisation. Under the multi-year agreement, HCLTech will support ASN Bank’s enterprise applications, and streamline services through a distributed delivery model to enhance efficiency and customer experience. Michel Ruijterman, Chief Information Officer, ASN Bank: “By signing this agreement , HCLTech’s proven track record in delivering scalable, innovative solutions tailored to the financial services sector means we can now confidently press on with streamlining our business by reducing the number of existing products and aligning the underlying processes and systems under

Riskified Announces Ascend 2026: “Intelligence in Motion” for the Next Era of Ecommerce17.12.2025 14:30:00 CET | Press release

From North America to the Asia-Pacific, Ascend 2026 will bring together leaders from the fraud and risk management community to define innovation-led ecommerce growth strategies Riskified (NYSE:RSKD), the leader in AI fraud and risk management for ecommerce, has announced that its premier global summit Ascend will once again be held as a global event series in 2026. Kicking off with North America (May) and continuing to Europe (June), Australia (August), China (September), and Japan (October), Ascend will convene each region’s largest merchants, industry experts, and technology leaders to discover the latest AI advancements and innovative strategies to propel ecommerce success. “Having pioneered using AI to fight ecommerce fraud and policy abuse over the past 10+ years, it’s equally exhilarating as it is concerning to witness the dramatic impact AI and agentic commerce are making on our industry. As risk grows more complex and shopper expectations rise, fraud teams and customer experie

Sinovac: Antigua Court Makes Interim Order Giving Board Control of the Company until the Trial of the Disputed 2025 Shareholder Meeting17.12.2025 13:00:00 CET | Press release

Sinovac Biotech Ltd. (NASDAQ: SVA) (SINOVAC or the Company), a leading provider of biopharmaceutical products in China, today announced that the Antigua High Court has ordered that the directors Mr. Simon Anderson, Mr. Shan Fu, Mr. Shuge Jiao, Mr. Yuk Lam Lo, Mr. Yumin Qiu, Mr. Yu Wang, Mr. Andrew Y. Yan and Mr. Yin Weidong (collectively, the Board), will comprise the Board of the Company until the trial listed in late April/early May 2026. The Antigua High Court decision arises from a hearing that took place on 27 October 2025, at which applicants SAIF Partners IV L.P., OrbiMed Partners Master Fund Limited and 1Globe Capital LLC each sought injunctions to confirm the composition of their respective favoured Boards, pending determination of a dispute over the outcome of the Company’s Special Shareholders Meeting on 8 July 2025 (the SSM Dispute). The hearing of the SSM Dispute has been scheduled to take place in the Antigua High Court in late April/early May 2026, with judgment to be de

In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.

Visit our pressroom
World GlobeA line styled icon from Orion Icon Library.HiddenA line styled icon from Orion Icon Library.Eye