Forskere: ”Vi har regnet forkert i årtier – halvdelen af en insulin-dosis virker muligvis ikke som forventet”
Er du en af de mange millioner type 1-diabetikere, der findes på verdensplan, så ved du, at der er forskel på, hvor hurtigt og hvor længe, insulin-præparater virker i kroppen. De forskelle er altafgørende for en god behandling af den enkelte diabetiker. Får man enten for lidt eller for meget insulin, kan det føre til for lavt eller for højt blodsukker, og begge tilstande kan være farlige.
Insulinens optagelse i kroppen er styret af, hvordan insulin-molekylerne arrangerer sig i klynger. Hvor et enkeltmolekyle giver hurtig virkning i kroppen, giver klynger af seks molekyler en langvarig effekt. Man er i årtier gået ud fra, at insulin grupperer sig med en bestemt fordeling af molekyleklynger på enten en, to eller seks molekyler. Og ud fra den formodning har man designet medicinpræparaterne.
Men ved hjælp af superavancerede enkeltmolekyle-mikroskoper har forskere fra Københavns Universitet i samarbejde med Aarhus Universitet nu som de første vist, at man gennem alle årene har taget fejl på dette vigtige punkt.
”Vi kan nu se, at vi har ramt forkert med 200 procent. Der er nemlig kun halvt så mange enkeltmolekyler i insulin, som alle har troet, mens der er langt flere klynger af seks molekyler, end vi gik ud fra. Det betyder reelt, at når vi tror, vi administrerer en bestemt dosis, er det måske i praksis kun den halve dosis, der har den hurtige virkning i kroppen, som vi forventer,” siger Nikos Hatzakis, professor på Kemisk Institut og seniorforfatter på studiet, der netop er bragt i det videnskabelige tidsskrift Communications Biology.
Det vil altså sige, at meget af den mængde insulin, som diabetikere i dag putter i kroppen, måske rent faktisk ikke bliver optaget som forventet. Dette er dog ikke decideret farligt for patienten, understreger forskerne, men viser, at der et stort potentiale for at gøre lægemidlerne mere præcise.
Fra grovkornet model til detaljeniveau
”Insulin-præparater er kun blevet bedre og bedre med årene, og rigtig mange diabetikere er velregulerede. Al udvikling af insulinpræparater har dog været baseret på en bestemt antagelse om, hvordan molekylerne går sammen. Men med den grovkornede standardmodel, man har haft til rådighed, har man ikke kunnet se den proces på detaljeniveau. Det er det, som vi kan,” siger Knud J. Jensen, professor ved Kemisk Institut og ligeledes seniorforfatter på studiet.
”Dette betyder ikke, at de nuværende insulin-præparater er forkerte, eller at patienter er blevet fejlmedicineret. Men det giver os en grundlæggende forståelse af, hvordan insulin opfører sig, og hvor meget der er tilgængeligt for kroppen som hurtigtvirkende medicin. Nu har vi den rigtige metode, som giver de rigtige tal. Vi håber, at man i industrien vil bruge dette eller et tilsvarende redskab - både til at tjekke nuværende insulinpræparater og til at udvikle nye med,” tilføjer Nikos Hatzakis.
Forskningsresultaterne er skabt i et miks af kemi, machine learning, simulationer og avanceret mikroskopi. Som de første har forskerne fra Kemisk Institut direkte observeret processen, hvor hver enkelt insulinmolekyle finder sammen med andre molekyler og danner klynger, og de har dermed været i stand til at se, hvor hurtigt hver klynge dannes.Forskerne har kigget på ca. 50.000 klynger.
At kende den nøjagtige fordeling af de forskellige klynger i en given mængde insulin, er alfa omega, når man udvikler lægemidler, som enten skal virke kort- eller langvarigt i kroppen:
”Insulinens klyngedannelse er ufattelig vigtig for, hvordan præparater virker. For forskellen på et hurtigt- og langsomtvirkende insulinpræparat er netop, hvor hurtigt molekylerne går sammen i klynger, og hvor hurtigt de går fra hinanden. Og med adgang til moderne avanceret udstyr er det faktisk ret simpelt og hurtigt at få indblik i de nøjagtige koncentrationer, men samtidig er det en meget sofistikeret viden, man får,” siger Freja Bohr, førsteforfatter og Ph.D.-stipendiat ved Kemisk Institut i Nikos Hatzakis-forskergruppen.
Bedre insulin gavner millioner
Ud over den anderledes fordeling af molekyle-klynger viser observationerne også, at klyngedannelsen er en langt mere kompleks proces, end man har formodet indtil nu. Klyngerne kan nemlig både vokse og skrumpe med langt flere forskellige intervaller, end man vidste.
“Uden endnu at kunne sige præcis hvordan bør dette give mulighed for at designe medicinen på nogle flere måder og måske få en insulin med en anden virkningsprofil, der giver mindre udsving i patienters blodsukker – det er nemlig den store udfordring i dag,” siger Freja Bohr.
Knud J. Jensen, der har forsket i insulin i over 15 år, tror på, at den nye viden vil kunne optimere alle typer af nye insulin og gøre en forskel for de over 40 millioner børn og voksne, som dagligt tager insulin. Livet som diabetiker er nemlig stadig ikke uden gener:
”Jeg får ind imellem henvendelser fra forældre, som spørger, om der ikke findes noget bedre til behandling af deres små børn. Når man har type-1-diabetes, som ikke er velreguleret, kan man have det virkelig skidt i længere perioder. Man kan bl.a. vågne op med mareridt, være utilpasse ved for lavt eller højt blodsukker, risikere bevidstløshed ved lavt blodsukker og senere i livet få følgeskader i øjne og fødder. Så hvis du kan gøre livet bedre for børn ved at lave en bedre insulin, end der findes i dag, er det fantastisk,” siger Knud J. Jensen.
FAKTABOKS: DIABETES OG INSULIN
- Insulin er et hormon, som vi producerer i bugspytkirtlen, og som regulerer mængden af sukker i blodet. Lider man af type 1-diabetes, ødelægger ens immunsystem de celler i bugspytkirtlen, der producerer insulin. Derfor er type 1-diabetikere afhængige af indsprøjtninger med insulin.
- Insulinmolekyler (monomerer) er ofte forbundne i klynger af to (dimer), eller seks (hexamer) enkeltmolekyler. Insulin lagres i kroppen som hexamerer. Det er dog monomeren, som er biologisk aktiv, og klyngerne skal derfor nedbrydes til monomerer, før insulinet kan binde sig til insulinreceptorerne. (kilde: Wikipedia)
Nøgleord
Kontakter
Nikos Hatzakis
Professor
Kemisk Institut, Nanoscience Center
Novo Nordisk Center for Protein research
Københavns Universitet
hatzakis@chem.ku.dk
+45 50 20 29 51
Knud J. Jensen
Professor
Kemisk Institut, Nanoscience Center
Københavns Universitet
kjj@chem.ku.dk
+45 21 51 67 21
Maria Hornbek
Journalist
Det Natur- og Biovidenskabelige Fakultet
Københavns Universitet
maho@science.ku.dk
+45 22 95 42 83
Billeder
Information om Københavns Universitet - Det Natur- og Biovidenskabelige Fakultet
Bülowsvej 17
1870 Frederiksberg C
35 33 28 28https://science.ku.dk/
Det Natur- og Biovidenskabelige Fakultet på Københavns Universitet – SCIENCE – er landets største naturvidenskabelige forsknings- og uddannelsesinstitution.
Fakultetets væsentligste opgave er at bidrage til løsning af de store udfordringer, som vi står overfor i en verden under hastig forandring med øget pres på bl.a. naturressourcer og markante klimaforandringer - både nationalt og globalt.
Følg pressemeddelelser fra Københavns Universitet - Det Natur- og Biovidenskabelige Fakultet
Skriv dig op her, og modtag pressemeddelelser på e-mail. Indtast din e-mail, klik på abonner, og følg instruktionerne i den udsendte e-mail.
Flere pressemeddelelser fra Københavns Universitet - Det Natur- og Biovidenskabelige Fakultet
Researchers eliminate the gritty mouth feel: How to make it easier to eat fiber-rich foods20.11.2024 10:34:33 CET | Press release
Fiber is something that most of us get far too little of. To change that, we need to actually enjoy eating it. Food researchers from the University of Copenhagen have now invented a "disguise" that solves the problem of the dry and gritty mouth feel of fibers.
Forskere fjerner den grynede følelse i munden: Sådan får vi nemmere ved at spise fiberrigt20.11.2024 07:33:00 CET | Pressemeddelelse
Vi spiser alle sammen for få fibre, og hvis vi skal lave om på det, kræver det at vi rent faktisk kan lide at spise dem. Fødevareforskere fra Københavns Universitet har opfundet en ’forklædning’, der løser problemet med den tørre og grynede følelse i munden, som kostfibre giver.
The myth of junkfood-eating gamers is actually about social hunger – and gender18.11.2024 12:45:04 CET | Press release
Gamers are often associated with unhealthy diets, messy living spaces and at times asocial lifestyles. While the gamer stereotypes first mentioned have some basis in reality, this is not necessarily for the reasons we thought. This, according to new research from the University of Copenhagen that examines the daily lives of gamers.
Myten om junkfood-spisende gamere handler faktisk om social sult – og om køn18.11.2024 08:17:00 CET | Pressemeddelelse
Gamere forbindes ofte med usunde madvaner, ringe husholdningsdisciplin, og nogle gange en asocial livstil. Førstnævnte fordomme om gamerne holder faktisk stik et stykke af vejen, men ikke helt af de grunde, vi troede. Det viser ny forskning i gamernes hverdagsliv fra Københavns Universitet.
Nina Rønsted i spidsen for den naturhistoriske fortælling15.11.2024 11:30:00 CET | Pressemeddelelse
Med et nyt naturhistorisk museum i sigte inden for de kommende år er der nok at tage fat på for professor Nina Rønsted, som fra 1. december 2024 skal være direktør for Statens Naturhistoriske Museum på Københavns Universitet.
I vores nyhedsrum kan du læse alle vores pressemeddelelser, tilgå materiale i form af billeder og dokumenter samt finde vores kontaktoplysninger.
Besøg vores nyhedsrum