Ældgammel fisk kan måske hjælpe til at lave kunstige organer i fremtiden

Et bankende hjerte. Et kompliceret organ, der pumper blod rundt i kroppen på dyr og mennesker. Ikke lige noget man forbinder med en petriskål i et laboratorie.
Men i fremtiden kan det måske blive en realitet, og det kan blive en redning for mennesker, hvis egne organer svigter. Og det er forskningen nu et skridt tættere på.
Professor Joshua Marc Brickman er nemlig blevet klogere på, hvordan netværket omkring stamceller ser ud. Den viden kan blandt andet hjælpe os med at lave stamceller, som vi kan lave kunstige organer ud af.
Pluripotente stamceller er stamceller, der kan udvikle sig til alle andre celler. For eksempel hjerteceller. Hvis man kan forstå, hvordan de pluripotente stamceller udvikler sig til et hjerte, så vil man potentielt også selv kunne skabe denne proces i et laboratorie.
Selvom forskerne er blevet klogere på netværket omkring stamceller, er det ikke til at sige, om og i så fald hvornår det kan resultere i, at man for eksempel vil kunne designe kunstige organer. Men hvis det er tilfældet, så er det langt ude i fremtiden.
Et ’levende fossil’ er nøglen til at forstå stamcellerne
Den pluripotente egenskab i stamceller – altså at cellerne kan udvikle sig til hvilken som helst anden celle - er noget, man traditionelt har forbundet med pattedyr.
Men nu har Joshua Marc Brickman og hans kollegaer fundet ud af, at det gen, der kontrollerer stamceller og gør, at de er pluripotente, også eksisterer i en fisk ved navn coelacanth.
”At det meste af stamcelle-netværket findes i coelacanth viser, at netværket allerede eksisterede tidligt i evolution. Og ved at studere netværket i andre arter som for eksempel denne fisk, så kan vi destillere, hvad de grundlæggende koncepter, der støtter en stamceller, er,” siger Joshua Marc Brickman.
Ud over at fisken er en anden art end pattedyr, så er den meget gammel. Den bliver kaldet et ’levende fossil’, da den for cirka 400 millioner år siden udviklede sig til den form, den har i dag. Den har finner, der er formet som lemmer, og man mener derfor, at den ligner det første dyr, der gik fra vand til land.
Forskerne så på stamcelle-netværket i 40 dyr. For eksempel hajer, mus og kænguruer, men coalecanth-fisken er den ældste.
"Ved at studere cellerne kan du så at sige gå tilbage i evolutionen," forklarer adjunkt Molly Lowndes.
Adjunkt Woranop Sukparangsi tilføjer:
"Den centrale faktor, der styrer gennetværket i stamceller, findes i coelacanth. Det viser, at netværket allerede eksisterede tidligt i evolutionen, potentielt så langt tilbage som for 400 millioner år siden."
Og ved at studere netværket i andre arter, såsom denne fisk, kan forskerne destillere, hvad der er grundlæggende for en stamcelle.
"Det smukke ved at bevæge sig tilbage i evolutionen er, at organismerne bliver mere simple. For eksempel har de kun én kopi af nogle essentielle gener i stedet for mange versioner. På den måde kan man begynde at adskille, hvad der virkelig er vigtigt for stamceller og bruge det at forbedre, hvordan man dyrker stamceller i en skål,« siger ph.d.-studerende Elena Morganti.
3d-modeller af specielt protein
Ud over at forskerne fandt ud af, at netværket omkring stamceller er langt ældre, end man hidtil har troet, og at de findes i en fisk, så blev de også klogere på, hvordan evolution helt præcist har påvirket netværket omkring pluripotente stamceller.
Forskerne brugte kunstig intelligens til at bygge tredimensionelle modeller af de forskellige OCT4-proteiner, altså det protein der er essentielt for pluripotente stamceller.
3D-model af OCT4-proteinet. Illustration: Woranop Sukparangsi.
Forskerne kunne se, at proteinets generelle struktur var den samme på tværs af evolutionen. I stedet var det placeringen af de forskellige elementer, der var ændret.
"Dette er et meget spændende fund om evolution, som ikke ville have været muligt før fremkomsten af nye teknologier. Man kan se det som en evolution, der tænker, vi roder ikke med ’motoren i bilen’, men vi kan flytte rundt på motoren og for at se, om det får bilen til at køre hurtigere,« siger Joshua Mark Brickman.
Du kan læse hele studiet “Evolutionary origin of vertebrate OCT4/POU5 functions in supporting pluripotency” i Nature Communications.
Studiet er blevet til i samarbejde med samarbejdspartnere i Australien, Japan og Europa, blandt andet Sylvie Mazans forskergruppe på the Oceanological Observatory of Banyuls-sur-Mer i Frankrig og Guillermo Montoya på Novo Nordisk Foundation Center for Protein Research her på Københavns Universitet.
Kontakt
Professor Joshua Mark Brickman
joshua.brickman@sund.ku.dk
Journalist og pressekonsulent Liva Polack
liva.polack@sund.ku.dk
+45 23 68 03 89
Kontakter
Liva PolackPressemedarbejder
Tlf:35 32 54 64Tlf:23 68 03 89liva.polack@sund.ku.dkBilleder

Information om Københavns Universitet - Det Sundhedsvidenskabelige Fakultet

Blegdamsvej 3B
2200 København N
+45 35 32 79 00http://email@sund.ku.dk
Det Sundhedsvidenskabelige Fakultet på Københavns Universitet leverer international anerkendt sundhedsvidenskabelig forskning, uddannelse og innovation.
Vores vision er at flytte grænserne for erkendelse og skabe ny sundhedsvidenskabelig viden og indsigt til gavn for den fortsatte videnskabelige udvikling, for samfundet og for det enkelte individ.
Følg pressemeddelelser fra Københavns Universitet - Det Sundhedsvidenskabelige Fakultet
Skriv dig op her, og modtag pressemeddelelser på e-mail. Indtast din e-mail, klik på abonner, og følg instruktionerne i den udsendte e-mail.
Flere pressemeddelelser fra Københavns Universitet - Det Sundhedsvidenskabelige Fakultet
Forskere kortlægger 7.000 år gammel genfejl, der beskytter mod HIV9.5.2025 06:30:00 CEST | Pressemeddelelse
Moderne HIV-medicin er baseret på en udbredt genfejl. Nu har forskere opsporet, hvor og hvornår mutationen opstod – og hvordan den beskyttede vores forfædre mod datidens sygdomme.
Eske Willerslev forbinder oprindeligt amerikansk folk med deres forfædre via ældgammelt DNA1.5.2025 06:07:00 CEST | Pressemeddelelse
Eske Willerslev og hans team hjælper det oprindelige amerikanske Picuris Pueblo-folk med at fastslå deres historie ved brug af ancient DNA. Det forbinder både Picuris Pueblo-folket til deres forfædre og til UNESCO-verdensarvsområdet Chaco Canyon.
Dansk forskning afslører præcis hvordan medicin virker på kræftceller28.4.2025 06:00:00 CEST | Pressemeddelelse
Med resultatet har forskerne nu fået en langt dybere forståelse af, hvordan proteiner fungerer på et meget detaljeret niveau. Håbet er, at det fører til bedre diagnostik og behandlinger for en række sygdomme.
Forskere skaber ’superstamceller’ og ser potentiale for bedre fertilitetsbehandling25.4.2025 11:00:00 CEST | Pressemeddelelse
’Superstamcellerne’ præsterer bedre end almindelige stamceller og kan udvikle sig til mange forskellige celletyper, finder forskere fra Københavns Universitet. Stamcellerne har mange potentielle anvendelser, herunder forbedret fertilitetsbehandling.
Flyvende dyr kan være nøglen til at bekæmpe næste pandemi28.3.2025 11:40:04 CET | Pressemeddelelse
En ny undersøgelse afslører de komplekse faktorer, der driver evolutionen af genomer. Data fra verdens største fuglegenom-database kan få betydning for forståelsen af, hvordan sygdomme tilpasser sig demografiske forhold eller klimaforhold,
I vores nyhedsrum kan du læse alle vores pressemeddelelser, tilgå materiale i form af billeder og dokumenter samt finde vores kontaktoplysninger.
Besøg vores nyhedsrum