Researchers hope to develop novel drugs for gastrointestinal disorders by fermenting feces
In a new study, researchers at the University of Copenhagen have been cultivating ‘good viruses’ from feces. The goal is to replace fecal capsules now being used in so-called fecal transplants. Their new technique has shown potential in studies with mice and the hope is that it will improve this life-saving treatment through standardization and pave its way toward mainstream medicine.
Most people get vaccinated without considering that the history of vaccinations began when fluid was extracted from the pus filled blisters of sick cows. Similarly, modern-day penicillin is far from its origins — a mold in Alexander Fleming's petri dish teeming with staphylococci.
Another form of life-saving medicine is experiencing a similar evolution: Fecal transplants, in which human fecal material is transferred from one person to another, save hundreds of lives every year in Denmark alone. But in the future, the treatment could become a cleaner remedy with much broader potential — far removed from the feces that is its starting point.
“Ultimately, our hope is to have a product that is free of bacteria and potentially harmful viruses, leaving only a purified dose of good viruses, called bacteriophages, that can potentially fight various gastrointestinal disorders and, in the long term, be used to treat a wide range of health issues,” says Assistant Professor Torben Sølbeck Rasmussen from the University of Copenhagen’s Department of Food Science.
Rasmussen is leading the new research together with department colleague Professor Dennis Sandris Nielsen and an array of international researchers – notable among them a research team from Tal Tech in Estonia. The long-term goal is for the treatment to evolve into a simple pill that can be prescribed by a doctor or found on a pharmacy shelf — tailored to individuals, but accessible to all. Still, the road ahead is long.
“Today, fecal transplants are only used to treat those who are very sick, typically patients who are in life-threatening situations due to Clostridioides difficile bacterium infections. Donors are rigorously screened for a number of known disease-causing bacteria and viruses, but it is expensive, and there is always a degree of uncertainty since the exact content of the donated feces varies from donation to donation. This technique allows us to near a standardized treatment where we know exactly what a patient is receiving,” explains Dennis Sandris Nielsen.
Food science to the rescue
Their new method employs fermentation, a process known from food science, used in the making of kombucha, kimchi and sourdough bread among other things. This is where the researchers' expertise in food science comes into play.
In short, they create favorable conditions in a sealed container to cultivate a bacterial culture that promotes beneficial microorganisms. Fermentation is also the process by which microorganisms are industrially grown to produce specific compounds.
In this case, the researchers begin with a microbial culture from feces, and the end product is a complex mixture of bacteria and bacteriophages – viruses that only attack bacteria.
The technique makes use of a device known as a chemostat — a container that continuously receives fluid with specific nutrients (a “growth medium”) while draining an equal amount of fluid.
Feces is initially added to the container, and the effect of the fluid replacement is that more of the bacteria (and bacteriophages) that thrive in the given growth medium are cultivated, while other content, including viruses that are infectious to humans (eukaryotes), are gradually removed.
This setup allows researchers to control the chemostat's content by adjusting the growth medium’s composition and dilution from the fluid replacement.
The goal is to create a balance with a specific composition of bacteria and bacteriophages, which provides an important standardization. This standardization makes the treatment scalable and safer as it ensures consistent content in each batch as long as the “community” of microorganisms remains balanced.
Most mice cured by the mixture
The researchers tested the new fermentation technique in chemostats on mice in two studies targeting two different disorders. One study focused on obesity treatment, and the other on infections with the deadly C. difficile bacterium, which is dangerous not only for humans but also for mice.
The most significant results appeared in mice infected with C. difficile: most of those treated with the mixture fully recovered, while the majority of the control group died from the infection.
“Our follow-up tests suggest that at least five out of the eight mice were cured by the treatment. This success in our first fermentation trial indicates the potential to optimize the process further,” says Torben Sølbeck Rasmussen.
The obesity treatment study also produced effects, albeit more subdued. Together, the studies provide a glimpse of a promising future for this type of treatment.
With standardization and safety, more people could be helped
Today, fecal transplants are standard treatment for only a few severe gastrointestinal diseases, such as infections with C. difficile (CDI), where patients’ lives are at risk. This is highly effective, helping nine out of ten patients and saving numerous lives annually. However, the fecal donation process remains a “black brown box,” as researchers in the field call it. The exact content of donor feces is unknown, and the precise effect of the microbial transfer on the recipient is not fully understood, which limits the treatment’s broader use.
“We know that gut health is crucial for a wide range of conditions and overall health, so the potential for broader applications is significant if we can create a standardized, safe product using these extracted bacteriophages,” says Torben Sølbeck Rasmussen.
Future treatments could be directed at conditions such as e.g. asthma and type-1 diabetes, which, according to Dennis Sandris Nielsen, would involve treatment beginning in early childhood.
“Treating critically ill older people with no other alternatives is very different from treating a nine-month-old baby at risk of developing asthma. This underscores the need for the standardization we’re working on. Achieving this requires the highest level of safety,” adds Nielsen.
*
Bacteriophage Facts
Bacteriophages are viruses that only infect bacteria and are highly specific; each bacteriophage only targets specific bacteria. As such, having the right “cocktail” of bacteriophages can be very effective in treating infections and is also essential for a healthy, balanced digestive system.
Facts: You are what you eat, because your gut is a garden
Our intestines are home to 100 trillion microorganisms — some beneficial, others harmful and a few that are potentially dangerous. The roles that many play in relation to our health remain unknown. Generally, a healthy gut is one that is in balance, with a diverse microbiome rather than one dominated by a few bacteria.
Today, we know that gut health significantly impacts overall well-being, including mental health, obesity, immune response, and concentration. The foods we consume play a large role in shaping our gut. Bacteria specialize in breaking down various foods; for instance, eating a lot of broccoli nurtures the beneficial bacteria that thrive on it, which can, in turn, improve your health.
Facts: Fecal treatment today and in the future
A healthy digestive system is like a balanced ecosystem, where the microbiome can restore itself if one species becomes too prevalent — much like animals on the savanna. With a severe imbalance, a new state can become stable, making it difficult to return to the previous balance. Folds and crevices in the digestive system, where beneficial bacteria can regrow, are often our saving grace. However, antibiotics or poor gut health can threaten this ability.
Older adults with weakened immune systems, for example, suffer from life-threatening infections with C. difficile. Today, they are offered fecal treatment from healthy donors. Capsules containing screened donor feces are ingested as a pill that dissolves in the gut, introducing viruses and a variety of beneficial bacteria that are in short supply. This treatment saves many lives a year in Denmark alone. But in the future, the treatment could be replaced by a cultivated alternative. Here, the core idea is that cultivated bacteriophages will eliminate harmful bacteria and keep them in check until the gut's native and ‘good bacteria’ return to restore a healthy balance.
Facts About the Studies
The researchers tested three methods in total to preserve and cultivate bacteriophages from feces while simultaneously removing unwanted bacteria and eukaryotic viruses (“human” viruses). The methods were tested on two groups of test animals, with each group having a control group that received a saline solution instead of the mixture.
- The first study involved using the methods to treat obesity in 48 mice, divided into three treatment groups and three control groups.
- The second study focused on treating C. difficile infections in another set of 48 mice, divided similarly into treatment and control groups.
- The third, a theoretical research study, describes the design of the most successful method.
In addition to Torben Sølbeck Rasmussen and Dennis Sandris Nielsen, the following researchers have contributed to the studies:
Study 1:
Xiaotian Mao, Sabina Birgitte Larsen, Josue Leonardo Castro Mejia, Frej Larsen from the Department of Food Science, University of Copenhagen
Line Sidsel Fisker Zachariassen, Axel Kornerup Hansen, Camilla Hartmann Friis Hansen, and Anders Brunse from the Department of Veterinary and Animal Sciences, University of Copenhagen
Signe Adamberg and Kaarel Adamberg from the Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
Study 2:
Xiaotian Mao, Sarah Forster, Sabina Birgitte Larsen, Kaare Dyekær Tranæs, Frej Larsen, Josue Leonardo Castro Mejia from the Department of Food Science, University of Copenhagen
Alexandra Von Münchow, Axel Kornerup Hansen, Camilla Hartmann Friis Hansen, and Anders Brunse from the Department of Veterinary and Animal Sciences, University of Copenhagen
Signe Adamberg and Kaarel Adamberg from the Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
Study 3:
Signe Adamberg, Xiaotian Mao, and Kaarel Adamberg from the Department of Chemistry and Biotechnology, Tallinn University of Technology, Estonia
Sabina Birgitte Larsen from the Department of Food Science, University of Copenhagen
Keywords
Contacts
Torben Sølbeck RasmussenAssistant ProfessorDepartment of Food Science, University of Copenhagen
Tel:+45 35328073torben@food.ku.dkDennis Sandris NielsenProfessorDepartment of Food Science, University of Copenhagen
Tel:+45 35 33 32 87Tel:+45 51 33 03 62dn@food.ku.dkKristian Bjørn-HansenJournalist and Press ContactFaculty of Science, Copenhagen University
Tel:+45 93516002kbh@science.ku.dkLinks
ABOUT THE FACULTY OF SCIENCE
The Faculty of Science at the University of Copenhagen – or SCIENCE – is Denmark's largest science research and education institution.
The Faculty's most important task is to contribute to solving the major challenges facing the rapidly changing world with increased pressure on, among other things, natural resources and significant climate change, both nationally and globally.
Subscribe to releases from Københavns Universitet - Det Natur- og Biovidenskabelige Fakultet
Subscribe to all the latest releases from Københavns Universitet - Det Natur- og Biovidenskabelige Fakultet by registering your e-mail address below. You can unsubscribe at any time.
Latest releases from Københavns Universitet - Det Natur- og Biovidenskabelige Fakultet
Researchers: If Power-to-X is to be a real climate solution, the state needs to use the stick5.12.2024 10:09:58 CET | Press release
Despite the massive hype surrounding Power-to-X (PtX), most of the world's announced green hydrogen projects lack financing. The market is deemed far too risky by stakeholders. And, there are many potential pitfalls. According to the authors of a study from the University of Copenhagen, actors must be ‘compelled’ to invest in a genuinely green manner.
Forskere: Staten skal frem med pisken, hvis Power-to-X skal blive en reel klimaløsning5.12.2024 07:16:00 CET | Pressemeddelelse
På trods den store hype af Power-to-X mangler langt størstedelen af verdens annoncerede brintprojekter finansiering. Markedet er alt for risikabelt, synes aktørerne. Samtidig er der mange potentielle faldgruber. Der er brug for ’tvang’, vurderer forskerne bag et studie fra Københavns Universitet.
Hver anden studerende bekymrer sig over brugen af plagiatsoftware4.12.2024 08:00:00 CET | Pressemeddelelse
I en ny undersøgelse fra Københavns Universitet bekymrer over halvdelen af de deltagende studerende fra danske gymnasier og universiteter sig over brugen af software der skal afsløre plagiat. Bekymringen fører til uhensigtsmæssig adfærd og fejlagtig læring hos de studerende, mener forskerne bag studiet.
Researchers eliminate the gritty mouth feel: How to make it easier to eat fiber-rich foods20.11.2024 10:34:33 CET | Press release
Fiber is something that most of us get far too little of. To change that, we need to actually enjoy eating it. Food researchers from the University of Copenhagen have now invented a "disguise" that solves the problem of the dry and gritty mouth feel of fibers.
Forskere fjerner den grynede følelse i munden: Sådan får vi nemmere ved at spise fiberrigt20.11.2024 07:33:00 CET | Pressemeddelelse
Vi spiser alle sammen for få fibre, og hvis vi skal lave om på det, kræver det at vi rent faktisk kan lide at spise dem. Fødevareforskere fra Københavns Universitet har opfundet en ’forklædning’, der løser problemet med den tørre og grynede følelse i munden, som kostfibre giver.
In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.
Visit our pressroom