Business Wire

PHC

Share
PHC Launches LiCellMoTM Live Cell Metabolic Analyzer for Real-Time Visualization of Cellular Metabolism in Cell and Gene Therapies

PHC Corporation Biomedical Division (headquarters: Chiyoda-ku, Tokyo, President: Nobuaki Nakamura; hereafter Biomedical Division) announced today the commercial launch of LiCellMo, a live cell metabolic analyzer that allows researchers to visualize metabolic(*1) changes in cell cultures, providing a more complete picture of cell activity for research uses in cell and gene therapies (CGT). LiCellMo uses PHC’s proprietary high-precision In-Line monitoring technology(*2), which enables continuous measurement of cellular metabolites in culture medium without needing to interrupt the experiment for sampling. LiCellMo will be launched in Japan in September, followed by a launch in other select geographies in October.

This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20240903521355/en/

To view this piece of content from mms.businesswire.com, please give your consent at the top of this page.

Left: Controller (MLC-AC0-P*) / Right: Detector (MLC-AD240A-P*) / Bottom: Sensor module (MLC-AS240A-PW) (Graphic: Business Wire)

As CGT gains recognition as a promising treatment approach for previously hard-to-treat diseases, research and development of CGT products such as CAR-T therapy(*3) for cancer treatment are progressing rapidly. Tracking cellular metabolism—the series of reactions that provide the energy required to sustain life—is a key component of process development for CGT products, as well as stem cell research(*4) including iPS cells and cancer immunology research. For the production of high-quality CGT products, it is essential to accurately assess cell growth and differentiation and create an optimal cell culture environment. The need for precise analysis of metabolic changes is especially important to support processes such as the transition from 2D cell culture techniques (*5) to more complex 3D cell culture methods, including organoids (*6).

Conventional methods for evaluating cell metabolism require researchers to take periodic samples of the culture medium, which makes it difficult to monitor changes in cell conditions over time, as the measurements are typically discrete data points. Repeated sampling also carries the risk of contamination. Reproducibility issues can also occur in culture manipulation, as the standards for assessing cell states depend on the skill and experience of the researcher. Consequently, researchers need a method to continuously monitor the state of cells based on objective and quantitative assessment indicators without the need for repeated medium sampling.

The new LiCellMo live cell metabolic analyzer overcomes these challenges encountered during research and contributes to the accelerated practical application of new treatment modalities. LiCellMo provides continuously measured data on key cellular metabolic pathways, giving researchers a precise picture of previously unobservable changes in the state of cells over time. By providing continuous and accurate metabolic data, LiCellMo will allow researchers to make more informed decisions. This will help contribute to novel research findings and important advances in therapies. In addition, the LiCellMo can be easily installed in a laboratory’s existing CO2 incubator with no changes to the usual culture environment, and the sensor module will be the only PHC’s proprietary consumable required for use. As a result, it offers researchers a flexible solution to challenges faced in conventional cell culture methods.

Product benefits

  • Real-time visualization of changes in cell metabolism through continuous monitoring of glucose and lactate using proprietary In-Line sensors
    Glucose and lactate concentrations in the medium are continuously measured by In-Line sensors and can be analyzed based on the rate of change. This allows researchers to visualize previously unobservable changes in cells over time, giving a clearer picture of cell activity. By measuring the culture environment without repeated sampling, contamination risk is reduced, and cells can be immediately available for additional assessments.
  • Use of preferred culture environment and culture medium and standard 24-well plates
    LiCellMo is designed to fit inside a laboratory’s existing CO2 incubator and to be used in standard cell culture environments. Researchers can use general-purpose cell culture equipment, such as 24-well plates and culture media, allowing analysis to be performed under a laboratory’s preferred culture conditions.
  • Direct evaluation of glycolysis, one of the main metabolic pathways of cellular energy, based on changes in glucose and lactate concentrations
    Glycolysis is a biochemical pathway in which the body’s cells generate energy through glucose consumption and lactate production. LiCellMo continuously measures these two indicators of metabolism to directly evaluate changes in the glycolytic pathway. This capability allows researchers to assess how drugs and different culture conditions influence cells and observe changes in the state of each cell over time, offering a deeper understanding of their metabolic profile.

LiCellMo has been used globally in beta-testing at a number of research institutes and pharmaceutical companies since 2023. One beta tester was Masaki Kimura, a Research Associate in the laboratory led by Takanori Takebe, Associate Professor, University of Cincinnati Department of Pediatrics, Director of Commercial Innovation at the Center for Stem Cell and Organoid Medicine (CuSTOM), an expert in the production of liver organoids from induced pluripotent stem cells (iPSCs) in the Division of Gastroenterology, Hepatology and Nutrition at Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA. Kimura said, “The challenge of the conventional metabolic measurements of cell cultures is that the differences with each time point are so large that it’s difficult to detect the dynamic changes in the metabolism.” Using LiCellMo allowed his team to collect far more detailed information from the liver organoids they had created than was previously possible.

Chikara Takauo, Director of PHC Corporation and Head of Biomedical Division, said, “I am very pleased to see the launch of LiCellMo. The In-Line monitoring technology featured in this live cell metabolic analyzer is newly developed proprietary technology building on the core technology of blood glucose sensor, the main product developed by IVD. This demonstrates the synergy between the Biomedical Division and the IVD Division. We believe that it will give researchers the opportunity to gain unprecedented new knowledge on cell metabolism in the fields of cancer immunology and stem cell research, and in the manufacture process for new treatments in those fields. With the launch of LiCellMo, we aim to contribute to the evolution of modalities by accelerating the creation of innovative solutions for QCD (quality, cost, and delivery) challenges in the CGT product manufacturing process, moving towards the early spread of CGT.”

Notes
(*1) A series of biochemical reactions within cultured cells that produce the energy required for cellular functions and survival.
(*2) A technology that enables continuous measurement of cellular metabolites in culture medium without the need for sampling, achieved by maintaining constant immersion in the medium.
(*3) A treatment for refractory cancers that are difficult to completely destroy through the body’s natural immune response alone. This treatment involves the collection of the patient’s T cells, genetically modifying them to produce a specialized protein called a chimeric antigen receptor (CAR), and then reintroducing these CAR-T cells into the patient.
(*4) Research focused on cells with the ability to divide and produce identical cells, as well as differentiate into other cell types.
(*5) Methods for culturing cells on a flat surface, where cells adhere to the bottom of a plastic vessel, such as a culture dish or flask.
(*6) Methods for culturing cells on 3D structures, where cells grow on a 3D substrate that mimics natural tissue environments.

About the Biomedical Division of PHC Corporation
Established in 1969, PHC Corporation is a Japanese subsidiary of PHC Holdings Corporation (TOKYO:6523), a global healthcare company that develops, manufactures, sells, and services solutions across diabetes management, healthcare solutions, life sciences and diagnostics. The Biomedical Division supports the life sciences industry helping researchers and healthcare providers in around 110 countries and regions through its laboratory and equipment and services including CO2 incubators and ultra-low temperature freezers.
www.phchd.com/global/phc

About PHC Holdings Corporation
PHC Holdings Corporation (TOKYO:6523) is a global healthcare company with a mission of contributing to the health of society through healthcare solutions that have a positive impact and improve the lives of people. Its subsidiaries include PHC Corporation, Ascensia Diabetes Care Holdings AG, Epredia Holdings Ltd., LSI Medience Corporation, Wemex Corporation, and Mediford Corporation. Together, these companies develop, manufacture, sell and service solutions across diabetes management, healthcare solutions, diagnostics and life sciences. The consolidated net sales in FY2023 were JPY 353.9 billion with global distribution of products and services in more than 125 countries and regions. PHC Group is a collective term referring to PHC Holdings Corporation and its subsidiaries.
www.phchd.com

To view this piece of content from cts.businesswire.com, please give your consent at the top of this page.

View source version on businesswire.com: https://www.businesswire.com/news/home/20240903521355/en/

About Business Wire

Business Wire
Business Wire
101 California Street, 20th Floor
CA 94111 San Francisco

http://businesswire.com
DK

Subscribe to releases from Business Wire

Subscribe to all the latest releases from Business Wire by registering your e-mail address below. You can unsubscribe at any time.

Latest releases from Business Wire

Modon Holding Announces a Strategic Investment in Wellington Lifestyle Partners, Expanding Its Global Portfolio in Luxury Lifestyle Destination Development26.11.2025 11:15:00 CET | Press release

Modon joins a consortium of investors to elevate Wellington International equestrian showgrounds and develop an ultra-luxury destination integrating residential, hospitality and sports assets in Wellington, Palm Beach County, FloridaStrengthens Modon’s global presence and enables knowledge exchange across large-scale mixed-use, hospitality and lifestyle developments Abu Dhabi-based Modon Holding P.S.C (“Modon”) today announced a strategic investment in Wellington Lifestyle Partners (“WLP”), joining a consortium of existing investors in the company. This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20251125937208/en/ Aerial shot of Wellington International (Photo: AETOSWire) Modon’s investment will support the long-term development of Wellington International equestrian showgrounds and deliver a landmark ultra-luxury real estate development featuring high-end residences, a boutique hotel, a commercial marketplace and a championshi

Epassi Announces Leadership Transition26.11.2025 11:00:00 CET | Press release

Nickyl Raithatha to join as Group CEOPekka Rantala to remain on Board as Non-Executive Chair Epassi Group, a European leader in digital employee benefits technology, today announced that Nickyl Raithatha will join as Chief Executive Officer. Nickyl will assume the role in 2026. Pekka Rantala, who has served as CEO since September 2019, will remain on the Board as Non-Executive Chair. This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20251126015983/en/ Pekka Rantala and Nickyl Raithatha Over the past six years, Epassi Group has evolved from a Nordic success story into one of Europe’s leading SaaS employee benefits and wellbeing platforms. The company has expanded both its geographic footprint as well as its product portfolio, driven by a powerful combination of strong organic growth and strategic acquisitions, with backing from TA Associates and Warburg Pincus. Today it has a presence in ten countries and a team of 1,000 people. W

Enerin raises €15 million Series A to industrialise modular high-temperature heat pumps for global industry26.11.2025 10:00:00 CET | Press release

Norway-based technology leader in industrial heat pumps, Enerin AS, has raised €15 million in an oversubscribed Series A led by Climentum Capital, The Footprint Firm, Johnson Controls and Move Energy. The investment marks Enerin’s transition from technology pioneer to serial production. Proceeds will expand commercial and manufacturing operations, and accelerate next-generation development. Johnson Controls’ participation provides strategic validation and global reach from one of the world’s leading providers of energy systems. Enerin, a technology leader in high-temperature heat pumps, has raised €15 million (NOK 180 million) in a Series A led by Climentum Capital, The Footprint Firm, Johnson Controls and Move Energy, with participation from PSV Hafnium and Momentum. “This investment marks our shift from pioneering to full industrialisation, bringing proven high-temperature technology from Norway to industries worldwide,” said Arne Høeg, Founder and CEO of Enerin. “Industrial companie

IQM to Invest Over €40 Million to Expand Finland Production Facility, Accelerate Innovation and Fuel Growth26.11.2025 09:49:00 CET | Press release

The new facility will produce advanced quantum chips for error corrected quantum computers, almost double the cleanroom space and system assembly line capacity to produce up to 30 quantum computers per year. The integrated quantum computer production line will be one of the world’s most advanced of its kind combining fabrication of quantum chips and system assembly. The expansion is expected to be completed by the first quarter of 2026. The expansion is part of IQM’s long-term commitment to scale its infrastructure and execute the ambitious technology roadmap aiming at 1M quantum computers by 2033. IQM Quantum Computers, a global leader in superconducting quantum computers, today announced over €40 million investment to expand its state-of-the-art production facility in Finland. This press release features multimedia. View the full release here: https://www.businesswire.com/news/home/20251126943986/en/ This strategic expansion will accelerate the development, fabrication and testing of

Thredd Powers Successful Migration of BigPay’s Card Portfolio to Next-Gen Platform26.11.2025 09:00:00 CET | Press release

The transition of millions of cards showcases Thredd’s superior capabilities amid a high-stakes, global trend of sunsetting legacy processing engagements Thredd, the leading next-generation global payments processor, has successfully migrated BigPay’s virtual and physical card portfolio from its previous, legacy processor to Thredd’s next-generation platform, underscoring Thredd’s leadership in complex card portfolio migrations. The migration project, one of several in recent years, included over 2.5 million cards and highlights Thredd’s unique combination of deep migration experience, robust processes, and advanced technology—qualities increasingly critical as the industry faces a wave of modernisation and replatforming. This achievement comes at a pivotal moment for the industry. Industry analysts estimate that retail banks failing to modernise could see 10% to 15% of their payments revenue at risk annually as legacy platforms struggle to keep pace with demands for hyperpersonalizati

In our pressroom you can read all our latest releases, find our press contacts, images, documents and other relevant information about us.

Visit our pressroom
World GlobeA line styled icon from Orion Icon Library.HiddenA line styled icon from Orion Icon Library.Eye