Forskere viser vejen: AI-modeller behøver ikke at sluge SÅ meget strøm
Udviklingen af AI-modeller er en overset klimasynder. Forskere fra Københavns Universitet har lavet en opskriftsbog over AI-modeller, der kan yde det samme, men bruger meget mindre energi. Energiforbruget og klimaaftrykket bør være et fast parameter, når man designer og træner AI-modeller, argumenterer forskerne.

At det koster kolossale mængder energi, når vi googler, taler med Siri, spørger ChatGPT om noget eller på andre måder bruger AI, er efterhånden blevet almen viden. Et studie anslår, at AI-servere i 2027 vil have et lige så stort elforbrug som Argentina eller Sverige. Og en enkelt forespørgsel til ChatGPT er anslået til i gennemsnit at sluge lige så meget energi som 40 opladninger af en mobiltelefon. Men på forskningsfeltet og i branchen har man stadig ikke fokus på at udvikle AI-modeller, som er energieffektive og derfor har et mindre CO2e-aftryk, påpeger forskere fra Københavns Universitet.
“Udviklerne har i dag et snævert fokus på at bygge AI-modeller, der er effektive i form af, hvor præcist et resultat, de kan opnå. Det svarer til at sige, at en bil er effektiv, fordi den får dig hurtigt frem, men ignorerer den mængde brændstof, den bruger. Og det har resulteret i AI-modeller, som ofte er ineffektive i form af energiforbrug,” siger adjunkt Raghavendra Selvan fra Datalogisk Institut, som forsker i mulighederne for at sænke CO2e-aftrykket fra AI.
Men det nye studie, som han og datalog-studerende Pedram Bakhtiarifard er to af forfatterne bag, viser, at man sagtens kan spare masser af CO2 uden at gå på kompromis med AI-modellens præcision. Det kræver, at man har klimaomkostninger for øje allerede i AI-modellernes design- og træningsfase.
”Hvis man fra start sammensætter en model, der er energieffektiv, mindsker du både CO2e-aftrykket i alle faser af modellens ’livscyklus’. Det gælder både i træningen af den, som er en særlig energitung proces, der ofte tager uger eller måneder, og i anvendelsen af den,” siger Raghavendra Selvan.
Opskriftsbog til branchen
I studiet har forskerne beregnet, hvor meget energi, det kræver at træne over 400.000 AI-modeller af typen convolutional neural networks – dog uden faktisk at træne alle modellerne. Convolutional neural networks bruges bl.a. til at analysere medicinske billeder med, til sprogoversættelse og til genkendelse af objekter og ansigter – en funktion, du måske genkender fra kamera-app’en på din egen smartphone.
På baggrund af beregningerne præsenterer forskerne en samling af AI-modeller, som bruger mindre energi på at løse en given opgave, men som yder cirka det samme. Studiet viser, at man enten ved at vælge andre slags modeller eller justere på modellerne kan spare 70-80% energi i trænings- og implementeringsfasen og kun gå 1% eller mindre ned i ydeevne. Og det er ifølge forskerne et konservativt estimat.
”Man kan se vores resultater som en opskriftsbog, som AI-fagkyndige kan slå op i. Opskriftsbogen fortæller ikke bare, hvor godt de forskellige algoritmer yder, men også hvor energieffektive de er. Og at man ved at skifte en ingrediens ud med en anden i opbygningen af modellen, ofte kan opnå samme resultat. Så nu kan fagfolk vælge den model, de ønsker ud fra både ydeevne og energiforbrug og uden at skulle træne hver enkelt model først,” siger Pedram Bakhtiarifard og fortsætter:
”Ofte træner man nemlig mange modeller, før man finder den, man synes er mest egnet til at løse en bestemt opgave. Det gør udviklingen af AI ekstra energitung. Derfor ville det være mere klimavenligt, hvis man vælger den rigtige model i første hug og samtidig vælger en model, der ikke sluger alt for meget strøm i træningsfasen.”
Forskerne understreger, at på specifikke felter som selvkørende biler eller visse medicinske områder kan modellens præcision dog være afgørende for sikkerheden, og her er det vigtigt ikke at gå på kompromis med ydeevnen. Men dette bør ikke afholde fra at gå efter høj energieffektivitet i andre domæner.
“AI har et fantastisk potentiale. Men skal vi sikre en bæredygtig og ansvarlig AI-udvikling, bør vi have en mere holistisk tilgang, der ikke kun har ydeevne for øje, men også klimapåvirkning. Og det kan vi sagtens finde en bedre balance i, viser vi her. Når vi udvikler AI-modeller til forskellige opgaver, bør det derfor være et grundkriterium også at kigge på, hvor energieffektive de er – ligesom det er standard at gøre i mange andre brancher,” slutter Raghavendra Selvan.
Opskriftsbogen, som forskerne har sat sammen i dette studie, er et open-source-datasæt, som andre forskere kan bruge. Informationen om alle de 423.000 AI-modeller er offentliggjort på Github og kan tilgåes ved hjælp af simple Python scripts.

[BOKS:] SVARER TIL INDUSTRIENS ENERGIFORBRUG I RANDERS KOMMUNE
Forskerne har estimeret hvor meget energi, det kræver at træne 429.000 af den undertype af AI-modeller, der hedder convolutional neural networks. De bruges bl.a. til at analysere medicinske billeder, til sprogoversættelse og til genkendelse af objekter.
Estimatet lyder, at alene træningen af de 429.000 neurale netværk, som studiet har kigget på, koster 263.000 kWh. Det er mere energi, end hvad den samlede industri i Randers Kommune forbruger på et år. Og det ville tage én computer cirka 100 år at udføre træningen. Forskerne har ikke trænet alle modellerne selv, men estimeret deres strømforbrug ved hjælp af en anden AI-model og har således sparet 99% af den energi, som træningen ville have krævet.
[BOKS:] HVORFOR HAR AI ET HØJT CO2-AFTRYK?
Træningen af AI-modeller bruger meget energi og udleder derfor en del CO2. Det skyldes de intensive beregninger, der udføres i træningen, som ofte kører på kraftige computere. Dette gælder især for store modeller som for eksempel sprogmodellen bag ChatGPT. AI-opgaver behandles ofte på datacentre, som kræver betydelige mængder strøm til at holde computerne i gang og køle dem ned.
[BOKS:] OM STUDIET
- Den videnskabelige artikel om studiet er optaget på konferencen International Conference on Acoustics, Speech and Signal Processing (ICASSP-2024).
- Forfatterne bag artiklen er Pedram Bakhtiarifard, Christian Igel og Raghavendra Selvan fra Datalogisk Institut på Københavns Universitet.
Nøgleord
Kontakter
Raghavendra Selvan
Adjunkt
Datalogisk Institut
Københavns Universitet
raghav@di.ku.dk
31 87 30 52
Pedram Bakhtiarifard
KA-studerende
Datalogisk Institut
Københavns Universitet
pba@di.ku.dk
60 21 99 10
Maria Hornbek
Journalist
Det Natur- og Biovidenskabelige Fakultet
Københavns Universitet
maho@science.ku.dk
22 95 42 83
Billeder


Links
Om Det Natur- og Biovidenskabelige Fakultet
Det Natur- og Biovidenskabelige Fakultet på Københavns Universitet – SCIENCE – er landets største naturvidenskabelige forsknings- og uddannelsesinstitution.
Fakultetets væsentligste opgave er at bidrage til løsning af de store udfordringer, som vi står overfor i en verden under hastig forandring med øget pres på bl.a. naturressourcer og markante klimaforandringer - både nationalt og globalt.
Følg pressemeddelelser fra Københavns Universitet - Det Natur- og Biovidenskabelige Fakultet
Skriv dig op her, og modtag pressemeddelelser på e-mail. Indtast din e-mail, klik på abonner, og følg instruktionerne i den udsendte e-mail.
Flere pressemeddelelser fra Københavns Universitet - Det Natur- og Biovidenskabelige Fakultet
New Research: Strong Link Between Western Diet During Pregnancy and ADHD4.3.2025 09:40:09 CET | Pressemeddelelse
New research from Denmark reveals that a mother’s diet during pregnancy—characterised by a Western dietary pattern high in fat and sugar and low in fresh ingredients—may increase the risk of neurodevelopmental disorders such as ADHD and autism in children. Researchers see potential for targeted dietary interventions during pregnancy to reduce this risk.
Ny forskning: Stærk sammenhæng mellem vestlig kost under graviditeten og ADHD3.3.2025 16:54:39 CET | Pressemeddelelse
Ny dansk forskning viser, at et vestligt kostmønster med højt indhold af fedt og sukker samt færre friske råvarer under graviditeten kan øge risikoen for udviklingsforstyrrelser som ADHD og autisme hos børn. Forskerne ser potentiale for målrettede kostinterventioner under graviditeten for at reducere risikoen.
Hvis vi ændrer på momsen, kan vi spare 170.000 menneskeliv i Europa hvert år26.2.2025 07:40:12 CET | Pressemeddelelse
Øger de europæiske lande momsen på kød og mejerivarer og fjerner den på frugt og grønt, kan vi undgå 170.000 dødsfald om året i Europa, mindske klimaaftrykket og samtidig spare milliarder af kroner. Det viser estimater fra et nyt studie, som Københavns Universitet har bidraget til.
Twenty years on, biodiversity struggles to take root in restored wetlands11.2.2025 11:00:10 CET | Press release
While the restoration of natural areas is high on political agendas, a comprehensive new study from the University of Copenhagen shows that – after more than two decades – biodiversity growth has stalled in restored Danish wetlands. The results also suggest that time alone will not heal things because the areas are too small and dry, and nitrogen inputs from agriculture continue. According to the researchers, we need to learn from the past.
Efter 20 år halter biodiversiteten stadig i genoprettede vådområder11.2.2025 10:36:50 CET | Pressemeddelelse
Genopretning af naturområder er lige nu i politisk høj kurs, men et nyt omfattende studie fra Københavns Universitet viser, at biodiversiteten stadig halter i de genoprettede danske vådområder efter mere end to årtier. Samtidig tyder forskningsresultaterne på, at tid alene ikke vil ændre på dette, for områderne er for små, for tørre og tilstrømningen af kvælstof fra landbruget er fortsat. Derfor må vi lære af fortiden, påpeger forskerne bag studiet.
I vores nyhedsrum kan du læse alle vores pressemeddelelser, tilgå materiale i form af billeder og dokumenter samt finde vores kontaktoplysninger.
Besøg vores nyhedsrum