Københavns Universitet      -        Det Natur- og Biovidenskabelige Fakultet

På Sydpolen jagter KU-forskere bevis for at kvantetyngdekraft findes

Del

Et storstilet eksperiment i Antarktis med deltagelse fra Københavns Universitet leder efter svar på, om der også findes tyngdekraft på kvanteniveau. En sær partikel, som rejser upåvirket gennem verdensrummet, skal give forskerne svaret.

IceCube-detektorerne er begravet mellem 1,5 og 2,5 kilometer under isen på Sydpolen. Det eneste synlige udstyr er IceCube Lab, også kaldet ICL, som er vært for de computere, der indsamler data fra de over 5.000 lyssensorer i isen. Illustration: IceCube Collaboration/NSF
IceCube-detektorerne er begravet mellem 1,5 og 2,5 kilometer under isen på Sydpolen. Det eneste synlige udstyr er IceCube Lab, også kaldet ICL, som er vært for de computere, der indsamler data fra de over 5.000 lyssensorer i isen. Illustration: IceCube Collaboration/NSF IceCube Collaboration/NSF

Flere tusinde sensorer fordelt over en kvadratkilometer i isen tæt ved Sydpolen skal give svaret på et af fysikkens store spørgsmål: Findes der tyngdekraft i den atomare verden? Sensorerne registrerer såkaldte neutrinoer, som er partikler uden elektrisk ladning og næsten uden masse, som kommer til Jorden fra rummet. Et forskerhold fra Niels Bohr Institutet, Københavns Universitet, har været med til at udvikle den metode, der skal benytte viden om neutrinoerne til at afklare, om kvante-tyngdekraft findes.

”Hvis der findes kvante-tyngdekraft, som vi tror, vil det være en af de brikker, som kan forene de to sider af fysikken. I dag bruger vi den klassiske fysik til at beskrive fænomener som tyngdekraft i vores omgivelser, men kvantemekanik, når der er tale om den atomare verden. Det vil være smukt, hvis de to sider af fysikken kan forenes til én stor, sammenhængende teori,” siger adjunkt Tom Stuttard fra Niels Bohr Institutet.

Tom Stuttard er medforfatter til en forskningsartikel, som offentliggøres i dag i det ansete tidsskrift Nature Physics. Artiklen beskriver et storstilet projekt, hvor NBI-holdet og amerikanske forskere har studeret flere end 300.000 neutrinoer. Der er dog ikke tale om de virkelig interessante neutrinoer, som kommer fra det ydre rum. Neutrinoerne i projektet er dannet i Jordens atmosfære. Dannelse af neutrinoer i atmosfæren sker, når partikler med høj energi fra rummet kolliderer med kvælstof eller andre molekyler.

”Fordelen ved at se på neutrinoer dannet i Jordens atmosfære er, at der er langt flere af dem. Vi havde brug for data fra mange neutrinoer til at vise, at vores metode fungerer. Det har vi vist nu. Dermed er vi klar til næste fase, som er at se på neutrinoer, der har rejst lang vej fra fjerne kilder i rummet,” siger Tom Stuttard.

Rejser uforstyrret tværs gennem Jorden

IceCube Neutrino Observatoriet er anlagt ved siden af forskningsstationen Amundsen-Scott South Pole Station i Antarktis. De fleste astronomiske og astrofysiske observatorier er naturligvis bedst til at studere himmelrummet over dem. Men for IceCube er det lige modsat: observatoriet er bedst til at studere himlen over den modsatte side af Jorden, altså den nordlige side. Det skyldes, at mens neutrinoen ubesværet rejser gennem vores planet – endda også gennem den varme, kompakte kerne - så bliver de fleste andre partikler stoppet. Dermed er signalet meget rent for de neutrinoer, der kommer fra den nordlige side af Jorden.

IceCube observatoriet køres af University of Wisconsin-Madison, USA. Flere end 300 forskere fra hele verden deltager i det videnskabelige samarbejde. Københavns Universitet er et af flere end 50 universiteter, som har et IceCube center for neutrino-studier.

Fordi neutrinoen ikke har elektrisk ladning og næsten ingen masse, bliver den hverken påvirket af elektromagnetisme eller af de stærke kernekræfter: den bevarer sin grundtilstand selv efter milliarder af lysårs rejse gennem rummet.

Det centrale spørgsmål er, om neutrinoens egenskaber virkelig er fuldstændigt uændrede efter rejse over lang afstand, eller om det trods alt er muligt at registrere ganske små forandringer.

”Hvis neutrinoens tilstand forandrer sig næsten umærkeligt på den måde, som vores hypotese siger, så vil det være den første stærke indikation på, at kvante-tyngdekraft findes,” siger Tom Stuttard.

Se video om IceCube

Neutrinoens tre nuancer

Det kræver baggrundsinformation at forstå, hvilke forandringer i neutrinoens egenskaber, som forskerholdet er på udkig efter. Vi kalder neutrinoen en partikel, men i virkeligheden består den af tre samtidigt producerede partikler. Dette kaldes i kvantemekanikken for superposition. Neutrinoen kan have tre grundlæggende konfigurationer. Fysikerne taler om, at neutrinoen har tre forskellige ”smage” (flavors), elektron, muon og tau. Hvilken af disse konfigurationer, som observeres, skifter under neutrinoens rejse – et besynderligt fænomen, som kaldes neutrino-oscillation. Denne kvanteopførsel består over tusindvis af kilometers rejse. Dette kaldes kvantekohærens.

”I de fleste eksperimenter bliver kohærensen hurtigt brudt, men det skyldes formentlig ikke kvante-tyngdekraft. Det er simpelthen bare ekstremt svært at skabe perfekte forhold kunstigt. For eksempel vil man gerne køre sine eksperimenter i vakuum, men i praksis lykkes det stort set altid for nogle få molekyler at slippe ind. Men neutrinoen bliver simpelthen ikke påvirket af stof i omgivelserne. Derfor ved vi, at brud på kohærensen ikke er forårsaget af menneskeskabte problemer med forsøgsopstillingen,” forklarer Tom Stuttard.

Mange kolleger var skeptiske

På spørgsmålet, om resultaterne af det studie, der er offentliggjort i Nature Physics, er som forventet, svarer forskeren:

”Vi befinder os i en sjælden kategori af forskningsprojekter. Nemlig eksperimenter, hvor der ikke findes nogen etableret teori. Derfor vidste vi simpelthen ikke, hvad vi skulle forvente. Imidlertid vidste vi, at vi kunne lede efter nogle af de generelle egenskaber, som vi kunne forvente, at en kvanteteori for tyngdekraft ville have.”

”Ganske vist havde vi håbet på at se forandringer, der kunne tyde på effekten af kvante-tyngdekraft, men det faktum, at vi ikke så nogen forandringer, udelukker på ingen måde, at de eksisterer. Når en atmosfærisk neutrino detekteres på Antarktis, har den typisk rejst gennem Jorden. Det vil sige en rejse på ca. 12.700 km, hvilket er meget kort sammenlignet med de neutrinoer, der er rejst hertil fra de ydre rum. Tilsyneladende er det nødvendigt med meget større afstand for at opnå en målbar effekt af kvante-tyngdekraften, hvis den altså findes,” siger Tom Stuttard. Han tilføjer, at det vigtigste formål med studiet var at vise, at holdets metode virker:

”I årevis har mange fysikere tvivlet på, at det nogensinde ville være muligt at teste kvante-tyngdekraft. Vores analyse viser, at det faktisk er muligt. Og med fremtidige målinger af astrofysiske neutrinoer samt udvikling af mere nøjagtige detektorer i løbet af det kommende årti håber vi, at vi endelig bliver i stand til at besvare dette grundlæggende spørgsmål.”

Den videnskabelige artikel “Searching for Decoherence form Quantum Gravity at the IceCube South Pole Neutrino Observatory” offentliggøres i dag i Nature Physics.

 Læs mere på IceCubes hjemmeside: https://icecube.wisc.edu/ 

Nøgleord

Kontakter

Tom Stuttard
Adjunkt
Niels Bohr Institutet
Københavns Universitet
+45 31 36 82 18
thomas.stuttard@nbi.ku.dk

Michael Skov Jensen
Journalist og teamkoordinator
Det Natur- og Biovidenskabelige Fakultet
Københavns Universitet
msj@science.ku.dk
+45 93 56 58 97

Følg pressemeddelelser fra Københavns Universitet - Det Natur- og Biovidenskabelige Fakultet

Skriv dig op her, og modtag pressemeddelelser på e-mail. Indtast din e-mail, klik på abonner, og følg instruktionerne i den udsendte e-mail.

Flere pressemeddelelser fra Københavns Universitet - Det Natur- og Biovidenskabelige Fakultet

Internet can achieve quantum speed with light saved as sound15.4.2024 11:16:35 CEST | Press release

Researchers at the University of Copenhagen’s Niels Bohr Institute have developed a new way to create quantum memory: A small drum can store data sent with light in its sonic vibrations, and then forward the data with new light sources when needed again. The results demonstrate that mechanical memory for quantum data could be the strategy that paves the way for an ultra-secure internet with incredible speeds.

Internettet kan få kvantefart med lys gemt som lyd15.4.2024 10:47:07 CEST | Pressemeddelelse

Forskere ved Niels Bohr Institutet på Københavns Universitet har udviklet en ny måde at skabe såkaldt kvantehukommelse: En lille tromme kan gemme data sendt med lys i dens lydvibrationer, for siden at sende data videre med nye lyskilder, når det igen skal bruges. Resultaterne understreger at en mekanisk hukommelse for kvantedata kan være strategien, der baner vej for et ultra sikkert internet med utrolige hastigheder

I vores nyhedsrum kan du læse alle vores pressemeddelelser, tilgå materiale i form af billeder og dokumenter samt finde vores kontaktoplysninger.

Besøg vores nyhedsrum
HiddenA line styled icon from Orion Icon Library.Eye