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Big data and large-scale machine learning have had a profound im-
pact on science and engineering, particularly in fields focused on
forecasting and prediction. Yet, it is still not clear how we can use the
superior pattern matching abilities of machine learning models for sci-
entific discovery. This is because the goals of machine learning and
science are generally not aligned. In addition to being accurate, sci-
entific theories must also be causally consistent with the underlying
physical process and allow for human analysis, reasoning, and manip-
ulation to advance the field. In this paper, we present a case study on
discovering a new symbolic model for oceanic rogue waves from data
using causal analysis, deep learning, parsimony-guided model selec-
tion, and symbolic regression. We train an artificial neural network
on causal features from an extensive dataset of observations from
wave buoys, while selecting for predictive performance and causal
invariance. We apply symbolic regression to distill this black-box
model into a mathematical equation that retains the neural network’s
predictive capabilities, while allowing for interpretation in the context
of existing wave theory. The resulting model reproduces known be-
havior, generates well-calibrated probabilities, and achieves better
predictive scores on unseen data than current theory. This showcases
how machine learning can facilitate inductive scientific discovery, and
paves the way for more accurate rogue wave forecasting.
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Rogue waves are extreme ocean waves that have caused1

countless accidents, often with fatal consequences (1).2

They are defined as waves whose crest-to-trough height H3

exceeds a threshold relative to the significant wave height4

Hs. The significant wave height is defined as four times the5

standard deviation of the sea surface elevation. Here, we use6

a rogue wave criterion with a threshold of 2.0:7

H/Hs > 2.0 [1]8

A rogue wave is therefore by definition an unlikely sample9

from the tail of the wave height distribution, and can in10

principle occur by chance under any circumstance. This makes11

them difficult to analyze, and requires massive amounts of12

data. Therefore, research has mostly focused on theory and13

idealized experiments in wave tanks, often considering only14

1-dimensional wave propagation (2). However, the availability15

of large observation arrays (3) makes them an ideal target for16

machine-learning based analysis (4, 5).17

In this study, we present a neural network-based model18

that predicts rogue wave probabilities from the sea state,19

trained solely on observations from buoys (6). The resulting20

model respects the causal structure of rogue wave generation;21

therefore, it can generalize to unseen physical regimes, is robust22

to distributional shift, and can be used to infer the relative23

importance of rogue wave generation mechanisms.24

While a causally consistent neural network is useful for 25

prediction and qualitative insight into the physical dynamics, 26

the ability for scientists to analyze, test, and manipulate a 27

model is crucial to recognize its limitations and integrate it 28

into the research canon. Despite advances in interpretable AI 29

(7), this is still a major challenge for most machine learning 30

models. 31

To address this, we transform our neural network into a 32

concise equation using symbolic regression (8, 9). The resulting 33

model combines several known wave dynamics, outperforms 34

current theory in predicting rogue wave occurrences, and can 35

be interpreted within the context of wave theory. We see this 36

as an example of “data-mining inspired induction” (10), an 37

extension to the scientific method in which machine learning 38

guides the discovery of new scientific theories. 39

We achieve this through the following recipe (Fig. 1): 40

1. A-priori analysis of causal pathways that leads to a set of 41

presumed causal parameters (Section 1). 42

2. Training an ensemble of regularized neural network pre- 43

dictors, and parsimony-guided model selection based on 44

causal invariance (Section 2). 45

3. Distillation of the neural network into a concise mathe- 46

matical expression via symbolic regression (Section 3). 47

Finally, we analyze both the neural network and symbolic 48

model in the context of current wave theory (Section 4). Both 49

models reproduce well-known behavior and point towards 50

new insights regarding the relative importance of different 51

mechanisms in the real ocean. 52
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Fig. 1. Overview of our study. Starting out with large amounts of tabular data from wave buoys, we use a causal analysis to identify the most important features for predicting
rogue waves. We then train an ensemble of neural networks on subsets of these features, and select the best one based on its predictive performance and causal invariance.
Finally, we use symbolic regression to distill the model into a concise mathematical equation. We analyze the neural network and symbolic expression in terms of their
performance on unseen data, and compare them to existing theory. This closes the arc between data, machine learning, and theory.

1. A causal graph for rogue wave generation53

To create a causal machine learning model it is crucial to54

expose it only to parameters with causal relevance. Otherwise,55

the model may prefer to encode spurious associations over56

true causal relationships, simply because they can be easier57

to learn. This requires us to identify the causal structure of58

rogue wave generation.59

There are several hypothesized causes of rogue waves (see60

11, for an overview). Typically, research focuses on linear su-61

perposition in finite-bandwidth seas (12), wave breaking (13),62

and wave-wave interactions in weakly nonlinear seas (14, 15)63

or through the modulational instability (16). Apart from these64

universal mechanisms, there are also countless possible interac-65

tions with localized features such as non-uniform topography66

(17), wave-current interactions like in the Agulhas (18) or the67

Antarctic Circumpolar Current (19), or crossing sea states at68

high crossing angles affecting wave breaking (20). We call this69

set of mechanisms the physical effects Φ.70

Since ocean waves are generated by a complex dynamical71

system, their true cause is a set of extrinsic environmental72

conditions E that are high-dimensional and not feasible to73

capture in full detail. However, most physical effects are74

mediated by one or several sea state parameters P, which75

are the characteristic aggregated parameters that appear in76

theoretical models of the respective wave dynamics, and that77

are included in operational wave forecasts. In this study,78

we would like obtain a model that relates relevant sea state79

parameters P to wave observations O, which ideally also lets80

us infer the relative importance of physical effects Φ.81

The go-to tool to analyze causal relationships is a causal 82

DAG (Directed Acyclic Graph; 21). In a causal DAG, nodes 83

represent variables and edges A → B imply that A is a cause 84

of B (usually in the probabilistic sense in that the probability 85

distribution P (B) depends on A). 86

We create a causal graph for rogue wave formation based 87

on the hypothesized causal mechanisms discussed above and 88

their corresponding theoretical models and parameters (Fig. 2). 89

Following this causal structure, we use the following set of sea 90

state parameters as candidates for representing the various 91

causal pathways (see Methods section for more information 92

on each parameter): 93

• Crest-trough correlation r, to account for the linear effect 94

of wave groups on crest-to-trough rogue waves (22). r 95

is the dominant causal factor behind linear rogue wave 96

formation (4). 97

• Steepness ε governing weakly nonlinear effects, such as 98

second-order and third-order bound waves, and wave 99

breaking (13, 23). 100

• Relative high-frequency energy Eh (fraction of total en- 101

ergy contained in the spectral band 0.25 Hz to 1.5 Hz) as 102

a proxy for the strength of local winds (24). 103

• Relative depth D̃ (based on peak wavelength), which is 104

central for nonlinear shallow-water effects (25, 26) and 105

wave breaking (13). 106

• Dominant directional spread σθ, which has an influence 107
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Fig. 2. The causes of rogue waves as a causal DAG (directed acyclic graph). Arrows A → B imply that A causes B.

on third-order nonlinear waves (26) and wave breaking108

(20).109

• Spectral bandwidth νf (narrowness) and σf (peakedness),110

appearing for example in the expression for the influence111

of third-order nonlinear waves (26).112

We also include a number of derived parameters that commonly113

appear in wave models and govern certain nonlinear (wave-114

wave) phenomena:115

• Benjamin-Feir index BFI, which controls third-order non-116

linear free waves (26) and the modulational instability117

(27).118

• Ursell number Ur, which quantifies nonlinear effects in119

shallow water (28).120

• Directionality index R (the ratio of directional spread and121

spectral bandwidth), which has an influence on third-order122

nonlinear free waves and is typically used in conjunction123

with the BFI (26).124

These parameters cover most causal pathways towards rogue125

wave generation. Still, there are some at least partially unob-126

served causes, as we do not have access to data on local winds,127

topography, or currents. Additionally, our in-situ measure-128

ments are potentially biased estimates of the true sea state129

parameters, and there is no guarantee that any given training130

procedure will converge to the true causal model. This implies131

that we cannot rely on a model being causally consistent by132

design; instead, we perform a-posteriori verification on the133

learned models to find the perfect trade-off between causal134

consistency and predictive performance (see Section 2C).135

2. An approximately causal neural network136

A. Input data. We use the Free Ocean Wave Dataset (FOWD,137

6), which contains 1.4 billion wave measurements recorded by138

the 158 CDIP wave buoys (3) along the Pacific and Atlantic139

coasts of the US, Hawaii, and overseas US territories. Water140

depths range between 10 m to 4000 m, and we require a sig-141

nificant wave height of at least 1 m. Each buoy records the142

sea surface elevation at a sampling frequency of 1.28 Hz, pro-143

ducing over 700 years of time series in total. FOWD extracts144

every zero-crossing wave from the surface elevation data and 145

computes a number of characteristic sea state parameters from 146

the history of the wave within a sliding window. 147

Due to the massive data volume of the full FOWD catalogue 148

(∼ 1 TB), we use an aggregated version that maps each sea 149

state to the maximum wave height of the following 100 waves 150

(as in 4). This reduces the data volume by a factor of 100 and 151

inflates all rogue wave probabilities to a bigger value p̂. We 152

correct for this via p = 1 − (1 − p̂)1/100, assuming that rogue 153

waves occur independently from each other. This is a good 154

approximation in most conditions, but may underestimate 155

seas with a strong group structure (see Section 5B). 156

The final dataset has 12.9M data points containing over 157

100,000 rogue waves exceeding 2 times the significant wave 158

height. Our dataset is freely available for download (see Data 159

Availability section). 160

B. Neural network architecture. The probability to measure a 161

rogue wave based on the sea state can be modelled as a sum of 162

nonlinear functions, each of which only depends on a subset of 163

the sea state parameters representing a different causal path 164

(act via different physical effects in Fig. 2): 165

logit P
(
y = 1

∣∣ x
)

∼
∑

i

fi

(
x(Si)) + b [2] 166

Here, y is a binary label indicating whether the current wave 167

is a rogue wave, x(Si) is the i-th subset of all causal sea state 168

parameters x, logit(p) = log(p)−log(1−p) is the logit function, 169

fi are arbitrary nonlinear functions to be learned, and b is a 170

constant bias term. 171

By including only a subset x(Si) of all parameters x as 172

input for fi, we can restrict which parameters may interact 173

non-additively with each other, which is an additional regu- 174

larizing constraint that increases interpretability and prevents 175

interactions between inputs from different causal pathways. 176

For example, to include the effects of linear superposition 177

and nonlinear corrections for free and bound waves (as in 29), 178

Eq. (2) can be written as: 179

logit P
(
y = 1

∣∣ x
)

∼ f1(r)︸︷︷︸
linear

+ f2(BFI, R)︸ ︷︷ ︸
free waves

+ f3(ε, D̃)︸ ︷︷ ︸
bound waves

[3] 180
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We use a neural network with fully-connected layers (FCN)181

to model the functions fi, which are universal function ap-182

proximators (30), and that can be trained efficiently for large183

amounts of data. The set of functions fi can be represented184

as a single multi-head FCN with a linear output layer (Fig. 3).185

We use a small feed-forward architecture with 3 hidden lay-186

ers and ReLU activation functions (rectified linear units, 31).187

To the best of our knowledge, this is the first time that a188

multi-head neural network has been used to restrict the in-189

teractions between input parameters to be consistent with a190

causal model.191

The neural network outputs a scalar p̃ ∈ (−∞, ∞), the log-192

odds of a rogue wave occurrence for the given sea state. For193

training, we use the Adam optimizer (32) and backpropagation194

to minimize a cross-entropy loss for binary classification with195

an added ℓ2 regularization term for kernel parameters:196

L(p, y, θ) = y · log(p) + (1 − y) · log(1 − p) + λ∥θ∥2 [4]197

with predicted probability p = logit−1(p̃), observed labels198

y ∈ {0, 1} (rogue wave or not), and neural network kernel199

parameters θ.200

To estimate uncertainties in the neural network parameters201

and resulting predictions, we use Gaussian stochastic weight202

averaging (SWAG, 33). For this, we train the network for203

50 epochs, then start recording the optimizer trajectory after204

each epoch for another 50 epochs. The observed covariance205

structure of the sampled parameters is used to construct a206

multivariate Gaussian approximation of the loss surface that207

we can sample from. This results in slightly better predictions,208

and gives us a way to quantify how confident the neural 209

network is in its predictions. 210

C. Causal consistency and predictive accuracy. Although we 211

include only input parameters that we assume to have a di- 212

rect causal connection with rogue wave generation, there is 213

no guarantee that the neural network will infer the correct 214

causal model. In fact, the presence of measurement bias and 215

unobserved causal paths makes it unlikely that the model will 216

converge to the true causal structure. To search for an approx- 217

imately causally consistent model we will have to quantify its 218

causal performance. 219

We achieve this through the concept of invariant causal 220

prediction (ICP; 34, 35). The key insight behind ICP is that 221

the parameters of the true causal model will be invariant under 222

distributional shift, that is, an intervention on an upstream 223

“environment” node in the causal graph that controls which 224

distribution the data is drawn from. Re-training the model 225

on data with different spurious correlations between features 226

should still lead to the same dependency of the target on the 227

features (see also 36). 228

We split the dataset randomly into separate training and 229

validation sets, in chunks of 1M waves. We train the model on 230

the full training dataset and perform ICP on the validation 231

dataset, which we partition into subsets representing differ- 232

ent conditions in space, time, depth, spectral properties, and 233

degrees of non-linearity (Table 1). This changes the domi- 234

nant characteristics of the waves in each subset (representing 235

e.g. storm and swell conditions), inducing distributional shift. 236

Then, we re-train the model separately on each subset and 237

compute the root-mean-square difference between predictions 238
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Table 1. The subsets of the validation dataset used to evaluate model
performance and invariance.

Subset name Condition # waves

southern-california Longitude ∈ (−123.5, −117)◦,
latitude ∈ (32, 38)◦

265M

deep-stations Water depth > 1000 m 28M
shallow-stations Water depth < 100 m 154M

summer Day of year ∈ (160, 220) 51M
winter Day of year ∈ (0, 60) 91M
Hs > 3m Hs > 3 m 58M

high-frequency Relative swell energy < 0.15 43M
low-frequency Relative swell energy > 0.7 46M
long-period Mean zero-crossing period > 9 s 100M

short-period Mean zero-crossing period < 6 s 42M
cnoidal Ursell number > 8 40M
weakly-nonlinear Steepness > 0.04 83M

low-spread Directional spread < 20◦ 25M
high-spread Directional spread > 40◦ 25M

full (all validation data) 472M

of the re-trained model Pk and the full model Ptot on the k-th239

data subset x(k):240

E2
k = 1

nk

nk∑

i

(
logit Pk

(
x(k)

i

)
− logit Ptot

(
x(k)

i

))2

[5]241

As the total consistency error we use the root-mean-square of242

Eq. (5) across all environments:243

E =

√√√√ 1
nE

nE∑

k

E2
k [6]244

Under a noise-free, infinite dataset and an unbiased training245

process that always identifies the true causal model we would246

find E = 0, i.e., re-training the model on the unseen data247

subset would not contribute any new information and leave248

the model perfectly invariant. Since all of these assumptions249

are violated here, we merely search for an approximately causal250

model that minimizes E .251

However, we cannot use E as the only criterion when se-252

lecting a model. The invariance error can only account for253

change in the prediction (variance), but not for its overall254

closeness to the true solution (bias). Therefore, we select a255

model that is Pareto-optimal with respect to the invariance256

error E and a predictive score L. This will not establish ab-257

solute causal consistency, but will allow us to select a model258

that is near-optimal given the constraints.259

For L we use the log of the likelihood ratio between the260

predictions of our neural network and a baseline model that261

predicts the empirical base rate yk = 1
n

∑n

i
yk,i, averaged over262

all environments k:263

L(p, y) = 1
nE

nE∑

k

(
I(pk) − I(yk)

)
[7]264

I(x) = x · log(x) + (1 − x) · log(1 − x) [8]265

To evaluate model calibration (the tendency to produce over-266

or under-confident probabilities), we compute a calibration267

curve by binning the predicted rogue wave probabilities. We 268

then compare each bin to the observed rogue wave frequency, 269

and compute the weighted root-mean-square residual between 270

measured (yi) and predicted (pi) log-odds: 271

C =

√√√√
nb∑

i=1

wi

(
logit(pi) − logit(yi)

)2 [9] 272

To account for uncertainty in the observations (e.g. close to 273

the extremes), the weights wk are based on the 33 % credible 274

interval of yi ∼ Beta(n+
i , n−

i ) with n+
i rogue and n−

i non-rogue 275

measurements. This is similar to the expected calibration error 276

(37), but models data uncertainty directly. We use a uniform 277

bin size (in logit space) of 0.1. 278

D. Model selection. We train a total of 24 candidate models on 279

different subsets of the relevant causal parameters (as identified 280

in Section 1) and varying number of input heads (between 1 281

and 3). We evaluate their performance in terms of calibration, 282

predictive performance, and causal consistency (Table 3). 283

We observe a clear anti-correlation between model complex- 284

ity and predictive score on one hand and causal consistency on 285

the other hand (Fig. 4). This is evidence that more complex 286

models are indeed less biased but exploit more non-causal 287

connections. We perform model selection based on parsimony: 288

A good model is one where a small increase in either predictive 289

performance or causal consistency implies a large decrease in 290

the other, i.e., where the Pareto front is convex. This is similar 291

to the metric used by PySR (9) to select the best symbolic 292

regression model (Section 3). 293

Based on this, we choose model 18 with parameter groups 294

S1 = {r}, S2 = {ε, σθ, σf , D̃} (i.e., a model with two input 295

heads) as the reference model for further analysis. The chosen 296

model produces well-calibrated probabilities (Fig. 5), and is 297

among the 5 best models in terms of predictive performance 298

on the test dataset (not used during training or selection), 299

despite using only 5 features with at most 4-way interactions. 300

The relatively low number of input features allows us to 301

analyze the model in detail using explainable AI methods 302

(Section 4A). 303

3. Learning an empirical equation for rogue wave risk 304

To make our model fully interpretable, we transform the 305

learned neural network into an equation via symbolic regres- 306

sion. Common approaches to symbolic regression include 307

Eureqa (39), AI Feynman (40), SINDy (41), and QLattice 308

(42). Here, we use PySR (8, 9), a symbolic regression pack- 309

age based on genetic programming (43). Genetic algorithms 310

build a large ensemble of candidate models and select the 311

best ones, before mutating and recombining them into the 312

next generation. In the case of symbolic regression, mathe- 313

matical expressions are represented as a tree of constants and 314

elementary symbols. In principle, this allows PySR to discover 315

expressions of unbounded complexity. 316

PySR’s central metric to quantify the goodness of an equa- 317

tion is again based on parsimony, in the form of the derivative 318

of predictive performance with respect to the model complex- 319

ity — if the true model has been discovered, any additional 320

complexity can at best lead to minor performance gains (by 321

overfitting to noise in the data). 322
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In our case, we seek to find an expression f from the space323

of possible expression graphs TO with allowed operators O324

that approximates the rogue wave log-probability as predicted325

by the neural network N over the dataset x:326

Find f ∈ TO that minimizes
∑

i

1
Var(yi)

[
f(xi)2 −σ(E[yi])2

]
327

where σ(x) = − log(1 + exp(−x)), and yi is the set of SWAG328

samples from N (xi). A sensible set of operators O is key to329

ensure interpretability of the resulting expression; we choose330

the symbols O = {+, −, ×, ÷, log, ·−1,
√

, ·2} to facilitate ex-331

pressions that are similar to current theoretical models of332

the form P ∼ A exp(B). We normalize all input features to333

approximately unit scale by converting directional spread to334

radians.335

PySR assembles a league of candidate expression and336

presents the Pareto-optimal solutions of increasing complexity337

to the user. We select the best solution by hand, picking the338

expression with the best parsimony score that contains all in- 339

put features and at least two terms containing the steepness ε 340

(to account for the various causal pathways in which steepness 341

affects rogue waves). The final equation is shown in Fig. 8, 342

and discussed in Section 4B. 343

4. Results 344

A. Neural network. We analyze the behavior of our neural 345

network predictor, which reveals important insights about the 346

physical dynamics of rogue waves and their prediction. 347

A.1. Rogue wave models should account for crest-trough correlation, 348

steepness, relative depth, and directionality. Only this parameter 349

combination achieves good causal consistency and predictive 350

scores at the same time, and experiments that exclude any of 351

these parameters perform unconditionally worse in either met- 352

ric. Especially the exclusion of crest-trough correlation leads 353

to catastrophic results, even when including other bandwidth 354

measures like σθ in its place (Table 3). 355

This suggests that the above set of parameters represents 356

the dominant rogue wave generation processes in the form of 357

linear superposition in finite-bandwidth seas with a directional 358

contribution and weakly nonlinear corrections. 359

The crest-trough correlation r is still lacking mainstream 360

adoption as a rogue wave indicator (for example, it is not part 361

of ECMWF’s operational forecast; 29), despite being a key 362

parameter for crest-to-trough rogue waves (4, 22, 44). The 363

other parameters are consistent with other empirical studies 364

such as Fedele (45), which considers the same parameters in 365

conjunction with rogue crests during storms. They are also 366

similar to the ingredients to ECMWF’s rogue wave forecast 367

(29), which is based on the effects of second and third-order 368

bound and free waves and uses steepness, relative depth, direc- 369

tional spread, and spectral bandwidth. However, in our model 370

these parameters are combined differently; a model enforcing 371

the same interactions (steepness and relative depth for bound 372

wave contribution, BFI and directionality index for free wave 373

contribution) performs poorly. 374

Numerous previous studies have found the BFI to be a 375

poor predictor of rogue wave risk in realistic sea states (4, 376

14, 15, 45–48) due to its strong underlying assumptions such 377

as unidirectionality. This study extends this to the fully 378

nonparametric and nonlinear case. 379
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Fig. 6. ALE (accumulated local effects) plot matrix for experiment 18. Shown is the change in rogue wave risk (in logits) from the average as each parameter is varied. The total
effect is the sum of all 1D, 2D, and higher-order contributions (not shown).

We study how our model uses different parameters by visu-380

alizing their impact on the prediction of the respective head of381

the neural network. For this, we make use of the accumulated382

local effects decomposition (ALE, 49), which measures the383

influence of infinitesimal changes in each parameter on the384

prediction outcome (see also 7). From the ALE plot (Fig. 6),385

we find that crest-trough correlation has by far the biggest386

influence of all parameters and explains about 1 order of mag-387

nitude in rogue wave risk variation, which is consistent with388

earlier model-free approaches (4). To first order, higher crest-389

trough correlation, lower directional spread, larger relative390

depth (deep water), and higher steepness lead to larger rogue391

wave risk, but parameter interactions can lead to more com-392

plicated, non-monotonic relationships (for example in very393

shallow water, see Section 4A.3).394

A.2. The Rayleigh distribution is an upper bound for real-world rogue395

wave risk. Despite the clear enhancement by weakly nonlinear396

corrections, the Rayleigh wave height distribution remains an397

upper bound for real-world (crest-to-trough) rogue waves. The398

Rayleigh distribution is the theoretical wave height distribution399

for linear narrow-band waves (38), i.e., the limit r → 1, ε → 0,400

σf → 0, D̃ → ∞, and σθ → 0, and reads:401

P (H/Hs > k) = exp(−2k2) [10]402

Peak steepness
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Fig. 7. Our model predicts a positive association between steepness and rogue
waves in deep water, and a negative association in shallow water. Shown is the
1-dimensional ALE (accumulated local effects) plot in both cases. Here, deep water
are sea states with D̃ > 3 and shallow water with D̃ < 0.1.

Only in the most extreme conditions does our model predict a 403

similarly high probability, for example for σθ = 13◦, ε = 0.008, 404

σf = 0.14, r = 0.88, and D̃ = 0.6, which gives the same 405

probability as the Rayleigh distribution, p = 3.3 × 10−4. 406

In the opposite extreme, rogue wave probabilities can fall 407

to as little as 10−5 for low values of r and high values of σθ 408

(such as in a sea with a strong high-frequency component and 409

high directional spread). This suggests that bandwidth effects 410

can create sea states that efficiently suppress extremes. 411
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P
(
H > 2HS | r, ε, σθ, σf , D̃

)
= exp

[
− 12. + 3.8r

︸ ︷︷ ︸
I

− log σθ

2
︸ ︷︷ ︸

II

+ 66.ε2

︸ ︷︷ ︸
III

− √
ε

︸︷︷︸
IV

− 0.23ε

D̃ · σf︸ ︷︷ ︸
V

]

Fig. 8. Our empirical equation for rogue wave risk, as identified through the distillation of our neural network predictor via symbolic regression. This equation outperforms
existing wave theory on unseen stations from our dataset, while being fully interpretable. Numbered terms are discussed in Section 4B. All floating point coefficients are
rounded to two significant digits.

A.3. There is a clear separation between deep water and shallow water412

regimes. All models with high causal invariance scores include413

an interaction between steepness and relative water depth.414

Looking at this more closely, we find that a stratification on415

deep and shallow water sea states reveals 2 distinct regimes416

(Fig. 7).417

In deep water, rogue wave risk is strongly positively as-418

sociated with steepness, as expected from the contribution419

of second and third-order nonlinear bound waves (26). The420

opposite is true in shallow water (D̃ < 0.1), where we find a421

clear negative association with steepness. This is likely due422

to depth-induced wave breaking (23). In very shallow waters,423

more sea states have a steepness close to the breaking thresh-424

old, which removes taller waves that tend to have a higher425

steepness than average.426

B. Symbolic expression. The final expression for the rogue427

wave probability, as discovered via symbolic regression, is given428

in Fig. 8. It consists of an exponential containing five additive429

terms:430

(I) −12 + 3.8r. The term with the largest coefficients is the431

one containing r, as expected. Comparison with the ex-432

ponential term in the Tayfun distribution Pt, Eq. (28), re-433

veals that this is approximately a linear expansion around434

r ≈ 1:435

log Pt(H/Hs > h) ∼ − 4h2

1 + r
[11]436

= −12 + 4r + O(r2)
∣∣h=2
r≈1

[12]437

This is an important sanity check for the model, since it438

shows that it is able to re-discover existing theory purely439

from data.440

(II) − log σθ/2. This encodes the observed enhancement for441

narrow sea states and has no direct relation to existing442

quantitative theory. Its functional form is somewhat443

problematic, since it causes the model to diverge for444

σθ → 0 (unidirectional seas). However, the model has445

only seen real-world seas with σθ ≳ 0.2, so we may replace446

this term with one that yields similar predictions for the447

relevant range of σθ, and does not diverge for σθ → 0.448

One possible candidate is449

1 − σθ

1 + σθ
, [13]450

which has a relative RMS error of about 5 % over the451

range σθ ∈ (20, 90)◦ compared to the original term.452

(III) 66ε2. Encodes the influence of weakly nonlinear effects453

for large values of ε ≳ 0.1.454

(IV) −
√

ε. This term encodes the observed negative association 455

between steepness and rogue waves for low values of ε 456

that could be due to wave breaking, or may be an artifact 457

of our sensor. 458

(V) 0.23ε/(D̃ · σf ). Since D̃ ∼ kpD and ε ∼ kpHs, this term 459

is proportional to the relative wave height η = Hs/D 460

and 1/σf . η is the most important parameter in the 461

theory of shallow-water waves, and appears for example 462

in the Korteweg-de Vries equation (25). Accordingly, 463

this term dominates the dynamics in very shallow water. 464

Dependencies on 1/σf occur in current theory (26), but 465

are usually paired with σθ to form the directionality index 466

R. This suggest that term V may be incomplete, and 467

missing physical dynamics that are not prevalent in the 468

data. 469

Overall, the equation is able to reproduce the same qualitative 470

behavior as observed from the neural network, with the same 471

well-calibrated outputs (C = 0.14) and predictive performance 472

(Section 5A) on the test data. 473

5. Discussion 474

A. Validation against theory. We test our models (neural net- 475

work and symbolic equation) against existing wave theory 476

based on their mean predictive score L across the environments 477

from Table 1 on the held-out test data (unseen stations). As 478

theoretical baselines we use the models from Longuet-Higgins 479

(Rayleigh, 38), Tayfun (22), Mori & Janssen (50), and a hybrid 480

combining Tayfun and Mori & Janssen (see Methods section). 481

The results are shown in Fig. 9. Since the Rayleigh and 482

Mori & Janssen models do not account for crest-trough cor- 483

relation, their predictions vastly overestimate the occurrence 484

rate of observed rogue waves. The Tayfun and hybrid models 485

perform better, but are still outperformed by our models ex- 486

cept in cnoidal seas. Our models are better predictors than 487

the baseline (predicting the empirical per-environment rogue 488

wave frequency) in all environments. 489

The neural network performs better than the symbolic equa- 490

tion in all environments, albeit only by a small margin. This 491

shows that the symbolic equation is able to capture the main 492

features of the full model, despite its compact representation. 493

B. Limitations. Using only wave buoy observations for our 494

analysis, we acknowledge the following limitations: 495

• We did not have sufficient data on local winds, currents, 496

or topography, which implies that some relevant causal 497

pathways are unobserved (see Fig. 2). While we expect 498

these effects to play a minor role in bulk analysis, they 499

could dramatically affect local rogue wave probabilities in 500

specific conditions, for example over sloping topography 501

(17) or in strong currents (51). 502
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Fig. 9. Comparison between our models and existing theory on held-out test data. Our models perform similar to each other and outperform existing theory on this dataset in all
but one data subset (cnoidal seas). x-scale is linear in (−10−3, 10−3), and logarithmic otherwise.

• We only have one-dimensional (time series) data and503

cannot capture imported parameters, such as solitons504

generated elsewhere that travel into the observation area.505

While we expect this to play a minor role, it could under-506

estimate the importance of nonlinear free waves.507

• Systematic sensor bias is common in buoys and can lead to508

spurious causal relationships. This may obscure the true509

causal structure and hurt model generalization to other510

sensors. However, this adaptation to sensor characteristics511

may be desirable in forecasting scenarios, where it allows512

the model to synthesize several noisy quantities into more513

robust ones.514

• By aggregating individual waves into 100-wave chunks, we515

underestimate the per-wave rogue wave probability in sea516

states in which rogue waves do not occur independently517

of each other, such as seas with a strong group structure.518

These limitations could potentially reduce our model’s ability519

to detect relevant causal pathways and underestimate the520

true rogue wave risk. Our analysis is agnostic to the data521

source and can be repeated on different sources to validate522

our findings.523

6. Next steps524

A. An improved rogue wave forecast. Our empirical model can525

be compared directly to existing rogue wave risk indicators by526

evaluating them on forecast sea state parameters. ECMWF’s527

operational rogue wave forecast (29) focuses on envelope wave528

heights which does not account for crest-trough correlation,529

and is conceptually similar to the Mori & Janssen model530

in Section 5A. Therefore, we are confident that substantial531

improvements are within reach in terms of predicting crest-to-532

trough rogue waves, even without using a black-box model.533

B. Predicting super-rogue waves. Observed wave height distri- 534

butions often show a flattening of the wave height distribution 535

towards the extreme tail (11, 14, 52). Therefore, we expect 536

rogue wave probabilities to be more pronounced for even more 537

extreme waves (for example with H/Hs > 2.4, as recently 538

observed in 53). 539

The lack of sufficient direct observations in these regimes 540

calls for a different strategy. One approach could be to trans- 541

form this classification problem (rogue wave or not) into a 542

regression, where the predicted variables are the free parame- 543

ters of a candidate wave height probability distribution (such 544

as shape and scale parameters of a Weibull distribution). Then, 545

a similar analysis as in this study could be conducted for these 546

parameters, which may reveal the main mechanisms influenc- 547

ing the risk for truly exceptional waves, and whether this 548

flattening can be confirmed in our dataset. 549

C. Commoditization of data-mining based induction. There is 550

a pronounced lack of established methods for machine learning 551

aimed at scientific discovery. We have shown that incorpo- 552

rating and enforcing causal structure can overcome many of 553

the shortcomings of standard machine learning approaches, 554

like poorly calibrated predictions, non-interpretability, and 555

incompatibility with existing theory. However, the methods 556

we leveraged are still in their infancy and rely on further com- 557

munity efforts to be end-to-end automated and adopted at 558

scale. Particularly, parsimony-based model selection (as in 559

Section 2D and Section 3) is still a manual process that re- 560

quires a firm understanding of model intrinsics and the domain 561

at hand. Nonetheless, we believe that the potential benefits of 562

causal and parsimony-guided machine learning for real-world 563

problems are too great to ignore, and we hope that this study 564

will inspire further research in this direction. 565
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Materials and Methods566

Sea state parameters. Here, we give the definition of the sea state567

parameters used in this study. For a more thorough description of568

how parameters are computed from buoy displacement time series569

see Häfner et al. (6).570

All parameters can be derived from the non-directional wave571

spectrum S(f), with the exception of directional spread σθ, which572

is estimated from the horizontal motion of the buoy and taken from573

the raw CDIP data.574

Most parameters are computed from moments of the wave spec-575

trum, where the n-th moment mn is defined as576

mn =
∫ ∞

0
fnS(f) df [14]577

The expressions for the relevant sea state parameters are:578

• Significant wave height:579

Hs = 4√
m0 [15]580

• Spectral bandwidth (narrowness):581

νf =
√

m2m0/m2
1 − 1 [16]582

• Spectral bandwidth (peakedness):583

σf =
m2

0
2
√

π

( ∫ ∞

0
f · S(f) df

)−1
[17]584

• Peak wavenumber kp, computed via the peak period (as in585

54):586

T p =

∫
S(f)4 df∫

f · S(f)4 df
[18]587

This leads to the peak wavenumber through the dispersion588

relation for linear waves in intermediate water of depth D:589

f(k)2 = gk

(2π)2 tanh(kD) [19]590

An approximate inverse is given in Fenton (55).591

• Relative depth, based on the wave length λ:592

D̃ = D

λ
= 1

2π
kpD [20]593

• Peak steepness:594

ε = Hskp [21]595

• Benjamin-Feir index:596

BFI = εν

σf

√
max{β/α, 0} [22]597

where ν, α, β are coefficients depending only on D̃ (full expres-598

sion given in 56).599

• Directionality index:600

R =
σ2

θ

2ν2
f

[23]601

• Crest-trough correlation:602

r = 1
m0

√
ρ2 + λ2 [24]603

ρ =
∫ ∞

0
S(ω) cos

(
ω

T

2

)
dω [25]604

λ =
∫ ∞

0
S(ω) sin

(
ω

T

2

)
dω [26]605

where ω is the angular frequency and T = m0/m1 the spectral606

mean period (12).607

Model implementation and hyperparameters. All performance critical 608

model code is implemented in JAX (57), using neural network 609

modules from flax (58) and optimizers from optax (59). We run 610

each experiment on a single Tesla P100 GPU in about 40 minutes, 611

including SWAG sampling and re-training on every validation subset. 612

The whole training process can also be executed on CPU in about 613

2 hours. The hyperparameters for all experiments are shown in 614

Table 2. 615

Table 2. Hyperparameters used in experiments.

Hyperparameters

Optimizer Adam

Learning rate 10−4

Number of hidden layers 3

Neurons in hidden layers (32/
√

nh, 16/
√

nh, 8/
√

nh)
ℓ2 penalty λ2 10−5

Number of training epochs 50

Number of SWAG epochs 50

Number of SWAG posterior samples 100

Train-validation split 60% – 40%

nh: number of input heads.

Full list of experiments. See Table 3. 616

Reference wave height distributions. We use the following theoretical 617

wave height exceedance distributions for comparison (with rogue 618

wave threshold κ, here κ = 2): 619

• Rayleigh (38): 620

PR(κ) = exp
(

− 2κ2
)

[27] 621

• Tayfun (12, 22): 622

PT(κ) = exp
( −4

1 + r
κ2

)
[28] 623

• Mori & Janssen (50, 60): 624

PMJ(κ) =
(

1 + 2π

3
√

3
BFI2

1 + 7.1R
κ2(κ2 − 1)

)
exp

(
− 2κ2

)
[29] 625

• Hybrid: 626

PH(κ) =
(

1+ 2π

3
√

3
BFI2

1 + 7.1R
κ2(κ2 −1)

)
exp

( −4
1 + r

κ2
)

[30] 627

Data Availability. The preprocessed and aggregated version of the 628

FOWD CDIP data used in this study is available for download 629

at https://erda.ku.dk/archives/ee6b452c1907fbd48271b071c3cee10e/ 630

published-archive.html. All model code is openly available at 631

https://github.com/dionhaefner/rogue-wave-discovery. 632

ACKNOWLEDGMENTS. Dion Häfner received funding from the 633

Danish Offshore Technology Centre (DOTC). Raw data were fur- 634

nished by the Coastal Data Information Program (CDIP), Integra- 635

tive Oceanography Division, operated by the Scripps Institution of 636

Oceanography, under the sponsorship of the U.S. Army Corps of 637

Engineers and the California Department of Parks and Recreation. 638

Computational resources were provided by DC3, the Danish Center 639

for Climate Computing. Portions of this work were developed from 640

the doctoral thesis of Dion Häfner (61). The authors thank Jonas 641

Peters for helpful discussions in the early stages of this work. The 642

authors thank two anonymous reviewers for their helpful comments. 643

This publication was made possible by the following open-source 644

software stack: JAX (57), flax (58), optax (59), PySR (9), scikit- 645

learn (62), PyALE (63), NumPy (64), SciPy (65), matplotlib (66), 646

Seaborn (67), pandas (68), Jupyter (69). 647

10 | www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX Häfner et al.

https://erda.ku.dk/archives/ee6b452c1907fbd48271b071c3cee10e/published-archive.html
https://erda.ku.dk/archives/ee6b452c1907fbd48271b071c3cee10e/published-archive.html
https://erda.ku.dk/archives/ee6b452c1907fbd48271b071c3cee10e/published-archive.html
https://github.com/dionhaefner/rogue-wave-discovery
www.pnas.org/cgi/doi/10.1073/pnas.XXXXXXXXXX


DRAFT

Table 3. Full list of experiments. L: Prediction score (higher is better). E: Invariance error (lower is better). C: Calibration error (lower is better).
Color coding ranges between (median − IQR, median + IQR) with inter-quartile range IQR.

Feature groups Scores

ID 1 2 3 L × 104 E × 102 C × 102

1 {r} 4.51 8.23 3.35
2 {r, R} {Ur} 5.42 9.94 5.54
3 {r, R, BFI} 5.43 10.50 5.60
4 {r, R} {Ur, R} 5.46 9.99 4.57

5 {r, R} {ε, D̃} 5.53 11.20 5.79
6 {r, ε, D̃} 5.20 11.00 3.60
7 {r, ε, R} 5.31 11.40 6.97
8 {r, D̃, R} 5.41 11.50 7.31

9 {ε, D̃, R} −0.13 24.80 7.60
10 {σf } {ε, D̃, R} 3.93 13.60 9.02
11 {r} {ε, D̃, R} 5.41 10.60 7.18
12 {r} {ε, D̃} {BFI, R} 5.41 11.10 6.02

13 {r, R} {D̃, ε, σθ} 5.99 12.40 4.06
14 {r, R} {D̃, ε, σf } 5.82 11.80 6.37
15 {r, R} {D̃, ε, R} 5.62 11.00 5.45
16 {r, ε, D̃, σθ} 5.83 11.60 5.94

17 {r} {ε, D̃} {BFI, σf , σθ} 5.85 11.80 6.40
18 {r} {ε, D̃, σf , σθ} 6.06 11.30 4.43
19 {r, ε, D̃, R, λp} 5.86 13.50 7.13
20 {r, ε, D̃, σθ , ν} 6.18 12.80 6.78

21 {r, ε, D̃, σθ , ν, Eh} 6.19 14.10 6.71
22 {r, ε, D̃, σθ , σf , ν, Eh} 6.42 15.70 4.97
23 {r, ε, D̃, σθ , σf , Eh, BFI, R} 6.60 17.00 5.75
24 {r, ε, D̃, σθ , σf , Eh, Hs, T , κ, µ, λp} 6.51 19.50 4.95

Symbols

r Crest-trough correlation ν Spectral bandwidth (narrowness)
σf Spectral bandwidth (peakedness) σθ Directional spread
ε Peak steepness Hskp R Directionality index σ2

θ/(2ν2)
BFI Benjamin-Feir index D̃ Relative peak water depth Dkp/(2π)
Eh Relative high-frequency energy Ur Ursell number
T Mean period κ Kurtosis
µ Skewness Hs Significant wave height
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